1
|
Rodrigues Aguiar MDF, Guterres MM, Benarrosh EM, Verri WA, Calixto-Campos C, Dias QM. The Nociceptive and Inflammatory Responses Induced by the Ehrlich Solid Tumor Are Changed in Mice Healed of Plasmodium berghei Strain ANKA Infection after Chloroquine Treatment. J Parasitol Res 2024; 2024:3771926. [PMID: 38774541 PMCID: PMC11108701 DOI: 10.1155/2024/3771926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/24/2024] Open
Abstract
Comorbidities that involve infectious and noninfectious diseases, such as malaria and cancer, have been described. Cancer and malaria induce changes in the nociceptive and inflammatory responses through similar pathophysiological mechanisms. However, it is unclear whether malaria and antimalarial treatment can change the inflammatory and nociceptive responses induced by solid cancer. Therefore, the present study experimentally evaluated the effect of infection by Plasmodium berghei strain ANKA and chloroquine treatment on the nociceptive and inflammatory responses induced by the solid Ehrlich tumor in male BALB/c mice. On the 1st experimental day, mice were infected with Plasmodium berghei and injected with tumor cells in the left hind paw. From the 7th to the 9th experimental day, mice were treated daily with chloroquine. The parasitemia was evaluated on the 7th and 10th days after infection. On the 11th experimental day, mice were evaluated on the von Frey filament test, the hot plate test, and the paw volume test. At the end of the experimental tests on the 11th day, the peripheral blood of all mice was collected for dosing of IL-1β and TNF-α. The blood parasitemia significantly increased from the 7th to the 10th day. The chloroquine treatment significantly decreased the parasitemia on the 10th day. The presence of the tumor did not significantly change the parasitemia on the 7th and 10th days in mice treated and nontreated with chloroquine. On the 11th day, the mechanical and thermal nociceptive responses significantly increased in mice with tumors. The treatment with antimalarial significantly reduced the mechanical nociceptive response induced by tumors. The hyperalgesia induced by tumors did not change with malaria. The mechanical and thermal hyperalgesia induced by the tumor was significantly reduced in mice treated and healed from malaria. On the 11th day, the volume of the paw injected by the tumor was significantly increased. The mice treated with chloroquine, infected with malaria, or healed of malaria showed reduced paw edema induced by the tumor. Mice with tumors did not show a change in IL-β and TNF-α serum levels. Mice with tumors showed a significant increase in serum levels of IL-1β but not TNF-α when treated with chloroquine, infected with malaria, or healed of malaria. In conclusion, the results show that malaria infection and chloroquine treatment can influence, in synergic form, the nociceptive and inflammatory responses induced by the solid tumor. Moreover, the mechanical antinociception, the thermal hyperalgesia, and the antiedema effect observed in mice treated with chloroquine and healed from malaria can be related to the increase in the serum level of IL-1β.
Collapse
Affiliation(s)
- Maria de Fatima Rodrigues Aguiar
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia, Campus-BR 364, Km 9.5, Porto Velho, Rondônia, Brazil
| | - Meiriane Mendes Guterres
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
| | - Eduarda Magalhães Benarrosh
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Cássia Calixto-Campos
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Quintino Moura Dias
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia, Campus-BR 364, Km 9.5, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- São Lucas University Center - São Lucas PVH, Porto Velho, Rondônia, Brazil
| |
Collapse
|
2
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
3
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
4
|
Dokunmu T, Obi P, Fatiregun O, Rotimi O, Agodirin S, Rotimi S. Haptoglobin genotypes and malaria comorbidity in breast cancer and healthy Nigerian women. Ann Afr Med 2022; 21:231-236. [DOI: 10.4103/1596-3519.356811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Bao G, Xu R, Wang X, Ji J, Wang L, Li W, Zhang Q, Huang B, Chen A, Zhang D, Kong B, Yang Q, Yuan C, Wang X, Wang J, Li X. Identification of lncRNA Signature Associated With Pan-Cancer Prognosis. IEEE J Biomed Health Inform 2021; 25:2317-2328. [PMID: 32991297 DOI: 10.1109/jbhi.2020.3027680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as potential prognostic markers in various human cancers as they participate in many malignant behaviors. However, the value of lncRNAs as prognostic markers among diverse human cancers is still under investigation, and a systematic signature based on these transcripts that related to pan-cancer prognosis has yet to be reported. In this study, we proposed a framework to incorporate statistical power, biological rationale, and machine learning models for pan-cancer prognosis analysis. The framework identified a 5-lncRNA signature (ENSG00000206567, PCAT29, ENSG00000257989, LOC388282, and LINC00339) from TCGA training studies (n = 1,878). The identified lncRNAs are significantly associated (all P ≤ 1.48E-11) with overall survival (OS) of the TCGA cohort (n = 4,231). The signature stratified the cohort into low- and high-risk groups with significantly distinct survival outcomes (median OS of 9.84 years versus 4.37 years, log-rank P = 1.48E-38) and achieved a time-dependent ROC/AUC of 0.66 at 5 years. After routine clinical factors involved, the signature demonstrated better performance for long-term prognostic estimation (AUC of 0.72). Moreover, the signature was further evaluated on two independent external cohorts (TARGET, n = 1,122; CPTAC, n = 391; National Cancer Institute) which yielded similar prognostic values (AUC of 0.60 and 0.75; log-rank P = 8.6E-09 and P = 2.7E-06). An indexing system was developed to map the 5-lncRNA signature to prognoses of pan-cancer patients. In silico functional analysis indicated that the lncRNAs are associated with common biological processes driving human cancers. The five lncRNAs, especially ENSG00000206567, ENSG00000257989 and LOC388282 that never reported before, may serve as viable molecular targets common among diverse cancers.
Collapse
|
6
|
Ma R, Lian T, Huang R, Renn JP, Petersen JD, Zimmerberg J, Duffy PE, Tolia NH. Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat Microbiol 2021; 6:380-391. [PMID: 33452495 PMCID: PMC7914210 DOI: 10.1038/s41564-020-00858-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
Plasmodium falciparum VAR2CSA binds to chondroitin sulfate A (CSA) on the surface of the syncytiotrophoblast during placental malaria. This interaction facilitates placental sequestration of malaria parasites resulting in severe health outcomes for both the mother and her offspring. Furthermore, CSA is presented by diverse cancer cells and specific targeting of cells by VAR2CSA may become a viable approach for cancer treatment. In the present study, we determined the cryo-electron microscopy structures of the full-length ectodomain of VAR2CSA from P. falciparum strain NF54 in complex with CSA, and VAR2CSA from a second P. falciparum strain FCR3. The architecture of VAR2CSA is composed of a stable core flanked by a flexible arm. CSA traverses the core domain by binding within two channels and CSA binding does not induce major conformational changes in VAR2CSA. The CSA-binding elements are conserved across VAR2CSA variants and are flanked by polymorphic segments, suggesting immune selection outside the CSA-binding sites. This work provides paths for developing interventions against placental malaria and cancer.
Collapse
Affiliation(s)
- Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rick Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan P. Renn
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E. Duffy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Correspondence: (N.H.T.)
| |
Collapse
|
7
|
Bioinformatics Tools for Gene and Genome Annotation Analysis of Microbes for Synthetic Biology and Cancer Biology Applications. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
He L, Chen J, Xu F, Li J, Li J. Prognostic Implication of a Metabolism-Associated Gene Signature in Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:265-277. [PMID: 33209981 PMCID: PMC7658576 DOI: 10.1016/j.omto.2020.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022]
Abstract
Lung cancer is the most common cancer worldwide, leading to high mortality each year. Metabolic pathways play a vital role in the initiation and progression of lung cancer. We aimed to establish a prognostic prediction model for lung adenocarcinoma (LUAD) patients based on a metabolism-associated gene (MTG) signature. Differentially expressed (DE)-MTGs were screened from The Cancer Genome Atlas (TCGA) LUAD cohorts. Univariate Cox regression analysis was performed on these DE-MTGs to identify genes significantly correlated with prognosis. Least absolute shrinkage and selection operator (LASSO) regression was performed on the resulting genes to establish an optimal risk model. Survival analysis was used to assess the prognostic ability of the model. The prognostic value of the gene signature was further validated in independent Gene Expression Omnibus (GEO) datasets. A gene signature with 13 metabolic genes was identified as an independent prognostic factor. Kaplan-Meier survival analysis demonstrated the good performance of the risk model in both TCGA training and GEO validation cohorts. Finally, a nomogram incorporating clinical parameters and the metabolic gene signature was constructed to help individualize outcome predictions. The calibration curves showed excellent agreement between the actual and predicted survival.
Collapse
Affiliation(s)
- Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feng Xu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou 318000, China
| |
Collapse
|
9
|
Redox Biology of Infection and Consequent Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5829521. [PMID: 32089773 PMCID: PMC7008258 DOI: 10.1155/2020/5829521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/01/2023]
|
10
|
Glover DM. 2018: a year in review for
Open Biology. Open Biol 2019; 9:190015. [PMID: 30958122 PMCID: PMC6367131 DOI: 10.1098/rsob.190015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|