1
|
Lebreton J, Colin L, Chatre E, Bernard P. RNAP II antagonizes mitotic chromatin folding and chromosome segregation by condensin. Cell Rep 2024; 43:113901. [PMID: 38446663 DOI: 10.1016/j.celrep.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.
Collapse
Affiliation(s)
- Jérémy Lebreton
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Léonard Colin
- CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Elodie Chatre
- Lymic-Platim, University Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Pascal Bernard
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France; CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
2
|
Carmo C, Coelho J, Silva RD, Tavares A, Boavida A, Gaetani P, Guilgur LG, Martinho RG, Oliveira RA. A dual-function SNF2 protein drives chromatid resolution and nascent transcripts removal in mitosis. EMBO Rep 2023; 24:e56463. [PMID: 37462213 PMCID: PMC10481674 DOI: 10.15252/embr.202256463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
Mitotic chromatin is largely assumed incompatible with transcription due to changes in the transcription machinery and chromosome architecture. However, the mechanisms of mitotic transcriptional inactivation and their interplay with chromosome assembly remain largely unknown. By monitoring ongoing transcription in Drosophila early embryos, we reveal that eviction of nascent mRNAs from mitotic chromatin occurs after substantial chromosome compaction and is not promoted by condensin I. Instead, we show that the timely removal of transcripts from mitotic chromatin is driven by the SNF2 helicase-like protein Lodestar (Lds), identified here as a modulator of sister chromatid cohesion defects. In addition to the eviction of nascent transcripts, we uncover that Lds cooperates with Topoisomerase 2 to ensure efficient sister chromatid resolution and mitotic fidelity. We conclude that the removal of nascent transcripts upon mitotic entry is not a passive consequence of cell cycle progression and/or chromosome compaction but occurs via dedicated mechanisms with functional parallelisms to sister chromatid resolution.
Collapse
Affiliation(s)
| | - João Coelho
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Rui D Silva
- Algarve Biomedical Center Research Institute (ABC‐RI) and Faculty of Medicine and Biomedical Sciences (FMCB)Universidade do AlgarveFaroPortugal
| | | | - Ana Boavida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle RicercheNaplesItaly
| | | | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute (ABC‐RI) and Faculty of Medicine and Biomedical Sciences (FMCB)Universidade do AlgarveFaroPortugal
- Department of Medical Sciences (DCM) and Institute for Biomedicine (iBiMED)Universidade de AveiroAveiroPortugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Católica Biomedical Research Centre, Católica Medical SchoolUniversidade Católica PortuguesaLisbonPortugal
| |
Collapse
|
3
|
Proteomic Response of Aedes aegypti Larvae to Silver/Silver Chloride Nanoparticles Synthesized Using Bacillus thuringiensis subsp. israelensis Metabolites. INSECTS 2022; 13:insects13070641. [PMID: 35886817 PMCID: PMC9323952 DOI: 10.3390/insects13070641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Aedes aegypti is a vector of important mosquito-borne diseases. Green synthesized nanoparticles (NPs) have been used to control the larvae of mosquitoes including A. aegypti. However, the molecular responses of A. aegypti larvae to green synthesized NPs remain unexplored. This work analyzed protein expression in A. aegypti larvae in response to treatment using green synthesized silver/silver chloride nanoparticles (Ag/AgCl NPs) based on two-dimensional polyacrylamide gel electrophoresis. Fifteen differentially expressed protein spots were selected for identification using mass spectrometry. The results showed that the six upregulated proteins in A. aegypti larvae responsible for green synthesized Ag/AgCl NP treatment were involved in mitochondrial dysfunction, DNA and protein damage, inhibition of cell proliferation, and cell apoptosis, implying the modes of actions of Ag/AgCl NPs. This finding has provided greater insight into the possible mechanisms of green synthesized Ag/AgCl NPs on the control of A. aegypti larvae. Abstract Silver/silver chloride nanoparticles (Ag/AgCl NPs) are an alternative approach to control the larvae of Aedes aegypti, a vector of mosquito-borne diseases. However, the molecular mechanisms of Ag/AgCl NPs to A. aegypti have not been reported. In this work, Ag/AgCl NPs were synthesized using supernatant, mixed toxins from Bacillus thuringiensis subsp. israelensis (Bti), and heterologously expressed Cry4Aa and Cry4Ba toxins. The images from scanning electron microscopy revealed that the Ag/AgCl NPs were spherical in shape with a size range of 25–100 nm. The larvicidal activity against A. aegypti larvae revealed that the Ag/AgCl NPs synthesized using the supernatant of Bti exhibited higher toxicity (LC50 = 0.133 μg/mL) than the Ag/AgCl NPs synthesized using insecticidal proteins (LC50 = 0.148–0.217 μg/mL). The proteomic response to Ag/AgCl NPs synthesized using the supernatant of Bti in A. aegypti larvae was compared to the ddH2O-treated control. Two-dimensional gel electrophoresis analysis revealed 110 differentially expressed proteins, of which 15 were selected for identification using mass spectrometry. Six upregulated proteins (myosin I heavy chain, heat shock protein 70, the F0F1-type ATP synthase beta subunit, methyltransferase, protein kinase, and condensin complex subunit 3) that responded to Ag/AgCl NP treatment in A. aegypti were reported for NP treatments in different organisms. These results suggested that possible mechanisms of action of Ag/AgCl NPs on A. aegypti larvae are: mitochondrial dysfunction, DNA and protein damage, inhibition of cell proliferation, and cell apoptosis. The findings from this work provide greater insight into the action of green synthesized Ag/AgCl NPs on the control of A. aegypti larvae.
Collapse
|
4
|
Naruse C, Sugihara K, Miyazaki T, Pan X, Sugiyama F, Asano M. A degron system targeting endogenous PD-1 inhibits the growth of tumor cells in mice. NAR Cancer 2022; 4:zcac019. [PMID: 35734392 PMCID: PMC9204894 DOI: 10.1093/narcan/zcac019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, targeted protein degradation systems have been developed using the ubiquitin-proteasome system. Here, we established Programmed cell death-1 (PD-1) knockdown mice as a model system for subjecting endogenous mouse proteins to the small molecule-assisted shutoff (SMASh) degron system. SMASh degron-tagged PD-1-mCherry in Jurkat cells and CD3+ splenocytes were degraded by the NS3/4A protease inhibitors, asunaprevir (ASV) or grazoprevir (GRV). Growth of MC-38 colon adenocarcinoma cells injected in Pdcd1-mCherry-SMASh homozygous knock-in (KI) mice was repressed by ASV or GRV. Moreover, growth of MC-38 cells was suppressed in wild-type mice transplanted with KI bone marrow cells after GRV treatment. This is the first study to use a degron tag targeting an endogenous mouse protein in vivo. Our experimental system using the SMASh degron may be employed for treating diseases and characterizing the cellular functions of essential proteins.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuhiko Miyazaki
- Department of Pathology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1104, Japan
| | - Xuchi Pan
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Uehara L, Saitoh S, Mori A, Sajiki K, Toyoda Y, Masuda F, Soejima S, Tahara Y, Yanagida M. Multiple nutritional phenotypes of fission yeast mutants defective in genes encoding essential mitochondrial proteins. Open Biol 2021; 11:200369. [PMID: 33823662 PMCID: PMC8025305 DOI: 10.1098/rsob.200369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are essential for regulation of cellular respiration, energy production, small molecule metabolism, anti-oxidation and cell ageing, among other things. While the mitochondrial genome contains a small number of protein-coding genes, the great majority of mitochondrial proteins are encoded by chromosomal genes. In the fission yeast Schizosaccharomyces pombe, 770 proteins encoded by chromosomal genes are located in mitochondria. Of these, 195 proteins, many of which are implicated in translation and transport, are absolutely essential for viability. We isolated and characterized eight temperature-sensitive (ts) strains with mutations in essential mitochondrial proteins. Interestingly, they are also sensitive to limited nutrition (glucose and/or nitrogen), producing low-glucose-sensitive and ‘super-housekeeping' phenotypes. They fail to produce colonies under low-glucose conditions at the permissive temperature or lose cell viability under nitrogen starvation at the restrictive temperature. The majority of these ts mitochondrial mutations may cause defects of gene expression in the mitochondrial genome. mrp4 and mrp17 are defective in mitochondrial ribosomal proteins. ppr3 is defective in rRNA expression, and trz2 and vrs2 are defective in tRNA maturation. This study promises potentially large dividends because mitochondrial quiescent functions are vital for human brain and muscle, and also for longevity.
Collapse
Affiliation(s)
- Lisa Uehara
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Ayaka Mori
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Kenichi Sajiki
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Yusuke Toyoda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Yuria Tahara
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Rivosecchi J, Jost D, Vachez L, Gautier FD, Bernard P, Vanoosthuyse V. RNA polymerase backtracking results in the accumulation of fission yeast condensin at active genes. Life Sci Alliance 2021; 4:4/6/e202101046. [PMID: 33771877 PMCID: PMC8046420 DOI: 10.26508/lsa.202101046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/23/2022] Open
Abstract
Using both experiments and mathematical modelling, the authors show that RNA polymerase backtracking contributes to the accumulation of condensin in the termination zone of active genes. The mechanisms leading to the accumulation of the SMC complexes condensins around specific transcription units remain unclear. Observations made in bacteria suggested that RNA polymerases (RNAPs) constitute an obstacle to SMC translocation, particularly when RNAP and SMC travel in opposite directions. Here we show in fission yeast that gene termini harbour intrinsic condensin-accumulating features whatever the orientation of transcription, which we attribute to the frequent backtracking of RNAP at gene ends. Consistent with this, to relocate backtracked RNAP2 from gene termini to gene bodies was sufficient to cancel the accumulation of condensin at gene ends and to redistribute it evenly within transcription units, indicating that RNAP backtracking may play a key role in positioning condensin. Formalization of this hypothesis in a mathematical model suggests that the inclusion of a sub-population of RNAP with longer dwell-times is essential to fully recapitulate the distribution profiles of condensin around active genes. Taken together, our data strengthen the idea that dense arrays of proteins tightly bound to DNA alter the distribution of condensin on chromosomes.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Laetitia Vachez
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - François Dr Gautier
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| |
Collapse
|
7
|
Khan C, Muliyil S, Ayyub C, Rao BJ. spn-A/rad51 mutant exhibits enhanced genomic damage, cell death and low temperature sensitivity in somatic tissues. Chromosoma 2020; 130:3-14. [PMID: 33222024 DOI: 10.1007/s00412-020-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
Homologous recombination (HR) is one of the key pathways to repair double-strand breaks (DSBs). Rad51 serves an important function of catalysing strand exchange between two homologous sequences in the HR pathway. In higher organisms, rad51 function is indispensable with its absence leading to early embryonic lethality, thus precluding any mechanistic probing of the system. In contrast, the absence of Drosophila rad51 (spn-A/rad51) has been associated with defects in the germline, without any reported detrimental consequences to Drosophila somatic tissues. In this study, we have performed a systematic analysis of developmental defects in somatic tissues of spn-A mutant flies by using genetic complementation between multiple spn-A alleles. Our current study, for the first time, uncovers a requirement for spn-A in somatic tissue maintenance during both larval and pupal stages. Also, we show that spn-A mutant exhibits patterning defects in abdominal cuticle in the stripes and bristles, while there appear to be only subtle defects in the adult wing and eye. Interestingly, spn-A mutant shows a discernible phenotype of low temperature sensitivity, suggesting a role of spn-A in temperature sensitive cellular processes. In summary, our study describes the important role played by spn-A/rad51 in Drosophila somatic tissues.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Sree Rama Engineering College, Tirupati, India.
| |
Collapse
|
8
|
Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol 2020; 27:605-614. [PMID: 32541897 PMCID: PMC7923177 DOI: 10.1038/s41594-020-0438-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Controlled perturbation of protein activity is essential to study protein function in cells and living organisms. Small molecules that hijack the cellular protein ubiquitination machinery to selectively degrade proteins of interest, so-called degraders, have recently emerged as alternatives to selective chemical inhibitors, both as therapeutic modalities and as powerful research tools. These systems offer unprecedented temporal and spatial control over protein function. Here, we review recent developments in this field, with a particular focus on the use of degraders as research tools to interrogate complex biological problems.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E Dixon-Clarke
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|