1
|
Dhar A, Bagyashree VT, Biswas S, Kumari J, Sridhara A, Jeevan SB, Shekhar S, Palani S. Functional redundancy and formin-independent localization of tropomyosin isoforms in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.587703. [PMID: 38617342 PMCID: PMC11014519 DOI: 10.1101/2024.04.04.587703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Tropomyosin is an actin binding protein which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking. In this study, we present and charcaterize mNeonGreen-Tpm fusion proteins that exhibit good functionality in cells as a sole copy, surpassing limitations of existing probes and enabling real-time dynamic tracking of Tpm-actin filaments in vivo. Using these functional Tpm fusion proteins, we find that S. cerevisiae Tpm isoforms, Tpm1 and Tpm2, colocalize on actin cables and indiscriminately bind to actin filaments nucleated by either formin isoform-Bnr1 and Bni1 in vivo, in contrast to the long-held paradigm of Tpm-formin pairing. We show that cellular Tpm levels regulate endocytosis by affecting balance between linear and branched actin networks in yeast cells. Finally, we discover that Tpm2 can protect and organize functional actin cables in absence of Tpm1. Overall, our work supports a concentration-dependent and formin isoform independent model of Tpm isoform binding to F-actin and demonstrates for the first time, the functional redundancy of the paralog Tpm2 in actin cable maintenance in S. cerevisiae.
Collapse
Affiliation(s)
- Anubhav Dhar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - VT Bagyashree
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- equal contribution
| | - Sudipta Biswas
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jayanti Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Amruta Sridhara
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subodh B Jeevan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Saravanan Palani
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Cagigas ML, Ariotti N, Hook J, Rae J, Parton RG, Bryce NS, Gunning PW, Hardeman EC. Single molecule visualization of tropomyosin isoform organization in the mammalian actin cytoskeleton. Cytoskeleton (Hoboken) 2024. [PMID: 38872463 DOI: 10.1002/cm.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.
Collapse
Affiliation(s)
- Maria L Cagigas
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Nicholas Ariotti
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
- Electron Microscope Unit, UNSW, Sydney, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jeff Hook
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Nicole S Bryce
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, UNSW Sydney, Sydney, Australia
| |
Collapse
|
3
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Chen X, Roeters SJ, Cavanna F, Alvarado J, Baiz CR. Crowding alters F-actin secondary structure and hydration. Commun Biol 2023; 6:900. [PMID: 37660224 PMCID: PMC10475093 DOI: 10.1038/s42003-023-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Actin, an important component of eukaryotic cell cytoskeleton, regulates cell shape and transport. The morphology and biochemical properties of actin filaments are determined by their structure and protein-protein contacts. Crowded environments can organize filaments into bundles, but less is known about how they affect F-actin structure. This study used 2D IR spectroscopy and spectral calculations to examine how crowding and bundling impact the secondary structure and local environments in filaments and weakly or strongly bundled networks. The results reveal that bundling induces changes in actin's secondary structure, leading to a decrease in β-sheet and an increase in loop conformations. Strongly bundled networks exhibit a decrease in backbone solvent exposure, with less perturbed α-helices and nearly "locked" β-sheets. Similarly, the loops become less hydrated but maintain a dynamic environment. These findings highlight the role of loop structure in actin network morphology and stability under morphology control by PEG.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Anatomy and Neurosciences, Vrije Universiteit, Amsterdam UMC, Amsterdam, Netherlands
| | - Francis Cavanna
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - José Alvarado
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
6
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
7
|
Selvaraj M, Kokate SB, Reggiano G, Kogan K, Kotila T, Kremneva E, DiMaio F, Lappalainen P, Huiskonen JT. Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms. Cell Rep 2023; 42:111900. [PMID: 36586407 DOI: 10.1016/j.celrep.2022.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is critical for cell migration, morphogenesis, endocytosis, organelle dynamics, and cytokinesis. To support diverse cellular processes, actin filaments form a variety of structures with specific architectures and dynamic properties. Key proteins specifying actin filaments are tropomyosins. Non-muscle cells express several functionally non-redundant tropomyosin isoforms, which differentially control the interactions of other proteins, including myosins and ADF/cofilin, with actin filaments. However, the underlying molecular mechanisms have remained elusive. By determining the cryogenic electron microscopy structures of actin filaments decorated by two functionally distinct non-muscle tropomyosin isoforms, Tpm1.6 and Tpm3.2, we reveal that actin filament conformation remains unaffected upon binding. However, Tpm1.6 and Tpm3.2 follow different paths along the actin filament major groove, providing an explanation for their incapability to co-polymerize on actin filaments. We also elucidate the molecular basis underlying specific roles of Tpm1.6 and Tpm3.2 in myosin II activation and protecting actin filaments from ADF/cofilin-catalyzed severing.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Shrikant B Kokate
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Konstantin Kogan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi Kotila
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elena Kremneva
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
8
|
Dugina VB, Shagieva GS, Kopnin PB. Cytoplasmic Beta and Gamma Actin Isoforms Reorganization and Regulation in Tumor Cells in Culture and Tissue. Front Pharmacol 2022; 13:895703. [PMID: 35721191 PMCID: PMC9204531 DOI: 10.3389/fphar.2022.895703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The cytoplasmic actin isoforms (β- and γ-actins) contribute greatly to cellular processes such as cel-cell and cell-matrix interactions, as well as cell polarization, motility and division. Distinct isoforms modulations are linked to serious pathologies, so investigations of underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications. Therefore, the study of the relevant mechanisms of change in the isoform’s balance is important for basic research and for clinical studies. The disruption of actin cytoskeleton and intercellular adhesions contribute to the neoplastic transformation, as it is important for the tumor growth, invasiveness and metastasis. Cytoplasmic actins display the functional diversity: β-actin is responsible for contractility, whereas γ-actin participates in the submembrane flexible cortex organization and direction cell motility. The involvement of β- and γ-actin in cell architecture, motility, division, and adhesion junctions in normal cells is not equivalent, and the major question was following: whether isoform ratio and the distribution in the cell corresponds to pathological function. Significant data were obtained in the study of tumor and normal cells in culture, as well as on clinical material of human tissues, and via selective regulation of β- and γ-actin’s expression. Investigation of the actins’ diversity and function in cancers may help to choose the benefit treatment strategies, and to design new therapies.
Collapse
Affiliation(s)
- V. B. Dugina
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Shagieva
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - P. B. Kopnin
- Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
- *Correspondence: P. B. Kopnin,
| |
Collapse
|
9
|
Boiero Sanders M, Toret CP, Guillotin A, Antkowiak A, Vannier T, Robinson RC, Michelot A. Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO J 2022; 41:e107982. [PMID: 35178724 PMCID: PMC8886540 DOI: 10.15252/embj.2021107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.
Collapse
Affiliation(s)
| | - Christopher P Toret
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Audrey Guillotin
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Adrien Antkowiak
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Thomas Vannier
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Alphée Michelot
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
10
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Dugina VB, Shagieva GS, Shakhov AS, Alieva IB. The Cytoplasmic Actins in the Regulation of Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22157836. [PMID: 34360602 PMCID: PMC8345992 DOI: 10.3390/ijms22157836] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
Collapse
Affiliation(s)
- Vera B. Dugina
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Galina S. Shagieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
12
|
Cancer type-specific alterations in actin genes: Worth a closer look? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 360:133-184. [PMID: 33962749 DOI: 10.1016/bs.ircmb.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Actins form a strongly conserved family of proteins that are central to the functioning of the actin cytoskeleton partaking in natural processes such as cell division, adhesion, contraction and migration. These processes, however, also occur during the various phases of cancer progression. Yet, surprisingly, alterations in the six human actin genes in cancer studies have received little attention and the focus was mostly on deregulated expression levels of actins and even more so of actin-binding or regulatory proteins. Starting from the early mutation work in the 1980s, we propose based on reviewing literature and data from patient cancer genomes that alterations in actin genes are different in distinct cancer subtypes, suggesting some specificity. These actin gene alterations include (missense) mutations, gene fusions and copy number alterations (deletions and amplifications) and we illustrate their occurrence for a limited number of examples including actin mutations in lymphoid cancers and nonmelanoma skin cancer and actin gene copy number alterations for breast, prostate and liver cancers. A challenge in the future will be to further sort out the specificity per actin gene, alteration type and cancer subtype. Even more challenging is (experimentally) distinguishing between cause and consequence: which alterations are passengers and which are involved in tumor progression of particular cancer subtypes?
Collapse
|