1
|
Ren Z, Shi Q, Xu S, Xu J, Yin Y, Lin Z, Xu S, Ma X, Liu Y, Zhu G, He X, Lu J, Li Y, Zhang W, Liu J, Yang Y, Han ET, Cao J, Lu F. Elicitation of T-cell-derived IFN-γ-dependent immunity by highly conserved Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII). Parasit Vectors 2023; 16:269. [PMID: 37553591 PMCID: PMC10410920 DOI: 10.1186/s13071-023-05897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII‑immunized mice. CONCLUSIONS PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.
Collapse
Affiliation(s)
- Zhenyu Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiyang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Simin Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Changshu Second People's Hospital, Suzhou, 215500, Jiangsu, People's Republic of China
| | - Jiahui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yi Yin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhijie Lin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xiaoqin Ma
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xinlong He
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingyuan Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yinyue Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenwen Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiali Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yun Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.
| | - Feng Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
2
|
Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, Nielsen CM, Lias AM, King LDW, Edwards NJ, Greenwood NM, Kingham L, Poulton ID, Khozoee B, Goh C, Hodgson SH, Mac Lochlainn DJ, Salkeld J, Guillotte-Blisnick M, Huon C, Mohring F, Reimer JM, Chauhan VS, Mukherjee P, Biswas S, Taylor IJ, Lawrie AM, Cho JS, Nugent FL, Long CA, Moon RW, Miura K, Silk SE, Chitnis CE, Minassian AM, Draper SJ. Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection. Sci Transl Med 2023; 15:eadf1782. [PMID: 37437014 PMCID: PMC7615121 DOI: 10.1126/scitranslmed.adf1782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.
Collapse
Affiliation(s)
- Mimi M Hou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Nick J Edwards
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Lucy Kingham
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D Poulton
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Cyndi Goh
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Susanne H Hodgson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Dylan J Mac Lochlainn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Jo Salkeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Micheline Guillotte-Blisnick
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Franziska Mohring
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J Taylor
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Fay L Nugent
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Robert W Moon
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
3
|
Gill J, Sharma A. Genomic analysis of single nucleotide polymorphisms in malaria parasite drug targets. Parasit Vectors 2022; 15:309. [PMID: 36042490 PMCID: PMC9425944 DOI: 10.1186/s13071-022-05422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Malaria is a life-threatening parasitic disease caused by members of the genus Plasmodium. The development and spread of drug-resistant strains of Plasmodium parasites represent a major challenge to malaria control and elimination programmes. Evaluating genetic polymorphism in a drug target improves our understanding of drug resistance and facilitates drug design. Approximately 450 and 19 whole-genome assemblies of Plasmodium falciparum and Plasmodium vivax, respectively, are currently available, and numerous sequence variations have been found due to the presence of single nucleotide polymorphism (SNP). In the study reported here, we analysed global SNPs in the malaria parasite aminoacyl-tRNA synthetases (aaRSs). Our analysis revealed 3182 unique SNPs in the 20 cytoplasmic P. falciparum aaRSs. Structural mapping of SNPs onto the three-dimensional inhibitor-bound complexes of the three advanced drug targets within aaRSs revealed a remarkably low mutation frequency in the crucial aminoacylation domains, low overall occurrence of mutations across samples and high conservation in drug/substrate binding regions. In contrast to aaRSs, dihydropteroate synthase (DHPS), also a malaria drug target, showed high occurrences of drug resistance-causing mutations. Our results show that it is pivotal to screen potent malaria drug targets against global SNP profiles to assess genetic variances to ensure success in designing drugs against validated targets and tackle drug resistance early on.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077, New Delhi, India. .,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|