1
|
Tomoi T, Yoshida Y, Ohe S, Kabeya Y, Hasebe M, Morohoshi T, Murata T, Sakamoto J, Tamada Y, Kamei Y. Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens. Commun Biol 2024; 7:1448. [PMID: 39506095 PMCID: PMC11541703 DOI: 10.1038/s42003-024-07141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.
Collapse
Affiliation(s)
- Takumi Tomoi
- Innovation Department, Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan.
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
| | - Yuka Yoshida
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Suguru Ohe
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tomohiro Morohoshi
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan.
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan.
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
2
|
Mishra RR, Nielsen BE, Trudrung MA, Lee S, Bolstad LJ, Hellenbrand DJ, Hanna AS. The Effect of Tissue Inhibitor of Metalloproteinases on Scar Formation after Spinal Cord Injury. Cells 2024; 13:1547. [PMID: 39329731 PMCID: PMC11430430 DOI: 10.3390/cells13181547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) often results in permanent loss of motor and sensory function. After SCI, the blood-spinal cord barrier (BSCB) is disrupted, causing the infiltration of neutrophils and macrophages, which secrete several kinds of cytokines, as well as matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading various extracellular matrix (ECM) proteins, as well as many non-matrix substrates. The tissue inhibitor of MMPs (TIMP)-1 is significantly upregulated post-SCI and operates via MMP-dependent and MMP-independent pathways. Through the MMP-dependent pathway, TIMP-1 directly reduces inflammation and destruction of the ECM by binding and blocking the catalytic domains of MMPs. Thus, TIMP-1 helps preserve the BSCB and reduces immune cell infiltration. The MMP-independent pathway involves TIMP-1's cytokine-like functions, in which it binds specific TIMP surface receptors. Through receptor binding, TIMP-1 can stimulate the proliferation of several types of cells, including keratinocytes, aortic smooth muscle cells, skin epithelial cells, corneal epithelial cells, and astrocytes. TIMP-1 induces astrocyte proliferation, modulates microglia activation, and increases myelination and neurite extension in the central nervous system (CNS). In addition, TIMP-1 also regulates apoptosis and promotes cell survival through direct signaling. This review provides a comprehensive assessment of TIMP-1, specifically regarding its contribution to inflammation, ECM remodeling, and scar formation after SCI.
Collapse
Affiliation(s)
- Raveena R. Mishra
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Brooke E. Nielsen
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Melissa A. Trudrung
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Samuel Lee
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Luke J. Bolstad
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
| | - Daniel J. Hellenbrand
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; (R.R.M.); (B.E.N.); (M.A.T.); (S.L.); (L.J.B.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, Ferreira T, Bharadwaj HR, Shet V, Kundu M, Yee ALW, Abdul-Rahman T, Atallah O. The molecular landscape of neurological disorders: insights from single-cell RNA sequencing in neurology and neurosurgery. Eur J Med Res 2023; 28:529. [PMID: 37974227 PMCID: PMC10652629 DOI: 10.1186/s40001-023-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
Collapse
Affiliation(s)
- Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | | | - Shankaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | - Toufik Abdul-Rahman
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Kolb J, Tsata V, John N, Kim K, Möckel C, Rosso G, Kurbel V, Parmar A, Sharma G, Karandasheva K, Abuhattum S, Lyraki O, Beck T, Müller P, Schlüßler R, Frischknecht R, Wehner A, Krombholz N, Steigenberger B, Beis D, Takeoka A, Blümcke I, Möllmert S, Singh K, Guck J, Kobow K, Wehner D. Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat Commun 2023; 14:6814. [PMID: 37884489 PMCID: PMC10603094 DOI: 10.1038/s41467-023-42339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
Collapse
Affiliation(s)
- Julia Kolb
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Vasiliki Tsata
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Nora John
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Veronika Kurbel
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Asha Parmar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gargi Sharma
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kristina Karandasheva
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Olga Lyraki
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Timon Beck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Anja Wehner
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Nicole Krombholz
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Dimitris Beis
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Aya Takeoka
- VIB-Neuroelectronics Research Flanders, 3001, Leuven, Belgium
- Department of Neuroscience and Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kanwarpal Singh
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany.
| |
Collapse
|
5
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
6
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Pincus Z, Mokalled MH. Functional trajectories during innate spinal cord repair. Front Mol Neurosci 2023; 16:1155754. [PMID: 37492522 PMCID: PMC10365889 DOI: 10.3389/fnmol.2023.1155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
Affiliation(s)
- Nicholas O. Jensen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brooke Burris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hunter Yamada
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
8
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Mokalled MH. Functional Trajectories during innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526502. [PMID: 36778427 PMCID: PMC9915574 DOI: 10.1101/2023.01.31.526502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for sixty individual zebrafish spanning eight weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
|
9
|
Genomic Structure, Protein Character, Phylogenic Implication, and Embryonic Expression Pattern of a Zebrafish New Member of Zinc Finger BED-Type Gene Family. Genes (Basel) 2023; 14:genes14010179. [PMID: 36672921 PMCID: PMC9859435 DOI: 10.3390/genes14010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We reported a new member of the C2H2-zinc-finger BED-type (ZBED) protein family found in zebrafish (Danio rerio). It was previously assigned as an uncharacterized protein LOC569044 encoded by the Zgc:161969 gene, the transcripts of which were highly expressed in the CNS after the spinal cord injury of zebrafish. As such, this novel gene deserves a more detailed investigation. The 2.79-kb Zgc:161969 gene contains one intron located on Chromosome 6 at 16,468,776-16,475,879 in the zebrafish genome encoding a 630-aa protein LOC569044. This protein is composed of a DNA-binding BED domain, which is highly conserved among the ZBED protein family, and a catalytic domain consisting of an α-helix structure and an hAT dimerization region. Phylogenetic analysis revealed the LOC569044 protein to be clustered into the monophyletic clade of the ZBED protein family of golden fish. Specifically, the LOC569044 protein was classified as closely related to the monophyletic clades of zebrafish ZBED4-like isoforms and ZBED isoform 2. Furthermore, Zgc:161969 transcripts represented maternal inheritance, expressed in the brain and eyes at early developmental stages and in the telencephalon ventricular zone at late developmental stages. After characterizing the LOC569044 protein encoded by the Zgc:161969 gene, it was identified as a new member of the zebrafish ZBED protein family, named the ZBEDX protein.
Collapse
|
10
|
Zeng CW, Zhang CL. Neuronal regeneration after injury: a new perspective on gene therapy. Front Neurosci 2023; 17:1181816. [PMID: 37152598 PMCID: PMC10160438 DOI: 10.3389/fnins.2023.1181816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chih-Wei Zeng
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Chun-Li Zhang
| |
Collapse
|
11
|
Lee HC, Lai WL, Lin CY, Zeng CW, Sheu JC, Chou TB, Tsai HJ. Anp32a Promotes Neuronal Regeneration after Spinal Cord Injury of Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms232415921. [PMID: 36555564 PMCID: PMC9786895 DOI: 10.3390/ijms232415921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Lin Lai
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chih-Wei Zeng
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Tze-Bin Chou
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence:
| |
Collapse
|
12
|
Udagawa S, Nagai A, Kikuchi M, Omori A, Tajika A, Saito M, Miura T, Irie N, Kamei Y, Kondo M. The pentameric hydrocoel lobes organize adult pentameral structures in a sea cucumber, Apostichopus japonicus. Dev Biol 2022; 492:71-78. [PMID: 36167149 DOI: 10.1016/j.ydbio.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022]
Abstract
Despite being one of the bilaterians, the body plan of echinoderms shifts from bilateral symmetry to five-fold radial, or pentaradial symmetry during embryogenesis or their metamorphosis. While the clarification of the developmental mechanism behind this transition will be a basis for understanding their unique body plan evolution, it is still poorly understood. With this regard, the hydrocoel, a mesodermal coelom formed on the left side of bilateral larva, would be a clue for understanding the mechanism as it is the first pentaradial structure that appears before metamorphosis and develops into the water vascular system of adults. By analyzing the development of a sea cucumber, Apostichopus japonicus, we found that the hydrocoel expresses genes related in muscle and neural formation such as myosin heavy chain, tropomyosin, soxC, and elav, implying that cells of the hydrocoel contributes to muscle and neural structures in the adult. Furthermore, ablation of one of the hydrocoel lobes led to incomplete development of adult pentaradial structures. The ablation of primary hydrocoel lobes resulted in the reduction in tentacles and the ablation of secondary hydrocoel lobes resulted in the reduction in water vascular canals and nerve cords. Our findings suggest that the hydrocoel lobes may serve as a potential organizing center for establishing the pentaradial body plan in echinoderms.
Collapse
Affiliation(s)
- Sumio Udagawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Akiko Nagai
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Mani Kikuchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Akihito Omori
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Atsushi Tajika
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Mieko Saito
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585, Japan
| | - Mariko Kondo
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Kanagawa, 238-0225, Japan.
| |
Collapse
|
13
|
Zeng CW, Sheu JC, Tsai HJ. Hypoxia-Responsive Subtype Cells Differentiate Into Neurons in the Brain of Zebrafish Embryos Exposed to Hypoxic Stress. Cell Transplant 2022; 31:9636897221077930. [PMID: 35225023 PMCID: PMC8894973 DOI: 10.1177/09636897221077930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Severe hypoxia results in complete loss of central nervous system (CNS) function in mammals, while several other vertebrates, such as zebrafish, can regenerate after hypoxia-induced injury of CNS. Since the cellular mechanism involved in this remarkable feature of other vertebrates is still unclear, we studied the cellular regeneration of zebrafish brain, employing zebrafish embryos from transgenic line huORFZ exposed to hypoxia and then oxygen recovery. GFP-expressing cells, identified in some cells of the CNS, including some brain cells, were termed as hypoxia-responsive recovering cells (HrRCs). After hypoxia, HrRCs did not undergo apoptosis, while most non-GFP-expressing cells, including neurons, did. Major cell types of HrRCs found in the brain of zebrafish embryos induced by hypoxic stress were neural stem/progenitor cells (NSPCs) and radial glia cells (RGs), that is, subtypes of NSPCs (NSPCs-HrRCs) and RGs (RGs-HrRCs) that were induced by and sensitively responded to hypoxic stress. Interestingly, among HrRCs, subtypes of NSPCs- or RGs-HrRCs could proliferate and differentiate into early neurons during oxygen recovery, suggesting that these subtype cells might play a critical role in brain regeneration of zebrafish embryos after hypoxic stress.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei.,Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Huai-Jen Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City.,Department of Life Science, Fu Jen Catholic University, New Taipei City
| |
Collapse
|
14
|
Perez JC, Gerber YN, Perrin FE. Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Front Aging Neurosci 2021; 13:769548. [PMID: 34899275 PMCID: PMC8662749 DOI: 10.3389/fnagi.2021.769548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The glial scar that forms after traumatic spinal cord injury (SCI) is mostly composed of microglia, NG2 glia, and astrocytes and plays dual roles in pathophysiological processes induced by the injury. On one hand, the glial scar acts as a chemical and physical obstacle to spontaneous axonal regeneration, thus preventing functional recovery, and, on the other hand, it partly limits lesion extension. The complex activation pattern of glial cells is associated with cellular and molecular crosstalk and interactions with immune cells. Interestingly, response to SCI is diverse among species: from amphibians and fishes that display rather limited (if any) glial scarring to mammals that exhibit a well-identifiable scar. Additionally, kinetics of glial activation varies among species. In rodents, microglia become activated before astrocytes, and both glial cell populations undergo activation processes reflected amongst others by proliferation and migration toward the injury site. In primates, glial cell activation is delayed as compared to rodents. Here, we compare the spatial and temporal diversity of the glial response, following SCI amongst species. A better understanding of mechanisms underlying glial activation and scar formation is a prerequisite to develop timely glial cell-specific therapeutic strategies that aim to increase functional recovery.
Collapse
Affiliation(s)
| | - Yannick N Gerber
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
15
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
16
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
18
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
19
|
Tsata V, Wehner D. Know How to Regrow-Axon Regeneration in the Zebrafish Spinal Cord. Cells 2021; 10:cells10061404. [PMID: 34204045 PMCID: PMC8228677 DOI: 10.3390/cells10061404] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
The capacity for long-distance axon regeneration and functional recovery after spinal cord injury is poor in mammals but remarkable in some vertebrates, including fish and salamanders. The cellular and molecular basis of this interspecies difference is beginning to emerge. This includes the identification of target cells that react to the injury and the cues directing their pro-regenerative responses. Among existing models of successful spinal cord regeneration, the zebrafish is arguably the most understood at a mechanistic level to date. Here, we review the spinal cord injury paradigms used in zebrafish, and summarize the breadth of neuron-intrinsic and -extrinsic factors that have been identified to play pivotal roles in the ability of zebrafish to regenerate central nervous system axons and recover function.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.T.); (D.W.)
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Correspondence: (V.T.); (D.W.)
| |
Collapse
|