1
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
2
|
Ólafsson G, Haase MAB, Boeke JD. Humanization reveals pervasive incompatibility of yeast and human kinetochore components. G3 (BETHESDA, MD.) 2023; 14:jkad260. [PMID: 37962556 PMCID: PMC10755175 DOI: 10.1093/g3journal/jkad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Kinetochores assemble on centromeres to drive chromosome segregation in eukaryotic cells. Humans and budding yeast share most of the structural subunits of the kinetochore, whereas protein sequences have diverged considerably. The conserved centromeric histone H3 variant, CenH3 (CENP-A in humans and Cse4 in budding yeast), marks the site for kinetochore assembly in most species. A previous effort to complement Cse4 in yeast with human CENP-A was unsuccessful; however, co-complementation with the human core nucleosome was not attempted. Previously, our lab successfully humanized the core nucleosome in yeast; however, this severely affected cellular growth. We hypothesized that yeast Cse4 is incompatible with humanized nucleosomes and that the kinetochore represented a limiting factor for efficient histone humanization. Thus, we argued that including the human CENP-A or a Cse4-CENP-A chimera might improve histone humanization and facilitate kinetochore function in humanized yeast. The opposite was true: CENP-A expression reduced histone humanization efficiency, was toxic to yeast, and disrupted cell cycle progression and kinetochore function in wild-type (WT) cells. Suppressors of CENP-A toxicity included gene deletions of subunits of 3 conserved chromatin remodeling complexes, highlighting their role in CenH3 chromatin positioning. Finally, we attempted to complement the subunits of the NDC80 kinetochore complex, individually and in combination, without success, in contrast to a previous study indicating complementation by the human NDC80/HEC1 gene. Our results suggest that limited protein sequence similarity between yeast and human components in this very complex structure leads to failure of complementation.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 14 11201, USA
| |
Collapse
|
3
|
Fellmeth JE, Jang JK, Persaud M, Sturm H, Changela N, Parikh A, McKim KS. A dynamic population of prophase CENP-C is required for meiotic chromosome segregation. PLoS Genet 2023; 19:e1011066. [PMID: 38019881 PMCID: PMC10721191 DOI: 10.1371/journal.pgen.1011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.
Collapse
Affiliation(s)
- Jessica E. Fellmeth
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Manisha Persaud
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hannah Sturm
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aashka Parikh
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
4
|
London N, Medina-Pritchard B, Spanos C, Rappsilber J, Jeyaprakash AA, Allshire RC. Direct recruitment of Mis18 to interphase spindle pole bodies promotes CENP-A chromatin assembly. Curr Biol 2023; 33:4187-4201.e6. [PMID: 37714149 DOI: 10.1016/j.cub.2023.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.
Collapse
Affiliation(s)
- Nitobe London
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
5
|
Zhang X, Li J, Zhang L, Liu H, Yi H, Liang M, Luo J, Li J, Dong Y. Prenatally detected six duplications at Xp22.33-p11.22: a case report. BMC Pregnancy Childbirth 2023; 23:294. [PMID: 37106349 PMCID: PMC10134624 DOI: 10.1186/s12884-023-05627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The discrepancy between the results of cytogenetics and the results of chromosome microarray analysis (CMA) has often led to confusion over genetic counselling for prenatal diagnosis. CASE PRESENTATION The prenatal ultrasound results of a congenital heart defect (CHD) foetus displayed an apartial endocardial pad defect and permanently dilated coronary sinus and left superior vena cava at 21 weeks of gestation. Cytogenetic analysis, CMA, fluorescent in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) with foetal cord blood samples were used to detect the genetic aetiology. Routine G-binding cytogenetic analysis showed normal karyotypes in both the foetus' and parents' blood samples. CMA results demonstrated that there were 53.973-Mb recurrent CNVs at Xp22.33-p11.22, as confirmed by MLPA assay. CONCLUSIONS Herein, we described the CNV of six duplications at Xp22.33-p11.22 and the 53.973 Mb duplication CNV that was not found in foetal cord blood samples by conventional cytogenetic methods, and it was confirmed by CMA and MLPA. Our novel findings will provide helpful information for prenatal diagnosis and genetic counselling for foetal CHDs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jian Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lan Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong Yi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mingxing Liang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianyu Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junnan Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanling Dong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Chongqing Fetal Medical Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
6
|
Cui Z, Du L, Wang J, Li Z, Xu J, Ou S, Li D, Li S, Hu H, Chen G, Wu Z. Overexpression of CENPL mRNA potentially regulated by miR-340-3p predicts the prognosis of pancreatic cancer patients. BMC Cancer 2022; 22:1354. [PMID: 36572856 PMCID: PMC9793567 DOI: 10.1186/s12885-022-10450-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In our previous study it was found that CENPL was overexpressed in hepatocellular carcinoma and significantly predicted patient's prognosis. However, the expression and prognostic value of CENPL in other gastrointestinal tumors remain unknown. Therefore, we investigated the expression and prognostic value of CENPL in esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), pancreatic adenocarcinoma (PAAD), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). METHODS In this study, Oncomine, GEPIA, OncoLnc, TIMER, cBioPortal, miRWalk and ENCORI databases were used to analyze the level of CENPL mRNA, prognostic value and potential regulatory mechanism of CENPL mRNA in tumors. The CENPL expression and clinicopathological data regarding PAAD were from the UCSC Xena database and univariate and multivariate Cox regression analyses were performed using R (Version 3.6.3). Immunohistochemical staining was used to verify the expression of CENPL protein in clinical specimens. Cytoscape (Version: 3.7.2) was used to visualize microRNA (miRNA) that potentially regulates CENPL. RESULTS Gene differential expression analysis showed that CENPL mRNA was significantly overexpressed in ESCA, STAD, PAAD, COAD and READ (p < 0.01). The overexpression of CENPL mRNA was significantly correlated with the poor prognosis of PAAD patients (p < 0.05). However, there was no significant correlation between the level of CENPL mRNA and the prognosis of ESCA, STAD, COAD and READ patients (p > 0.05). Univariate and multivariate Cox regression analyses suggested that CENPL was a prognostic risk factor for PAAD. The mutation rate of CENPL in PAAD was 2.2% (17/850). There was no significant correlation between the CENPL expression and the infiltration levels of immune cells in PAAD (|Cor|< 0.5). Immunohistochemical staining showed that CENPL was overexpressed in 42% (11/26) of PAAD specimens, which was significantly higher compared with that in the normal tissues. The expression of miR-340-3p and miR-484 in PAAD were significantly lower than in the normal tissues (p < 0.05) and PAAD patients with lower expression of miR-340-3p had poorer prognosis (p < 0.05). CONCLUSION CENPL potentially regulated by miR-340-3p, is overexpressed in PAAD and predicts patient's prognosis, suggestive of a diagnostic and prognostic value in PAAD patients.
Collapse
Affiliation(s)
- Zhongyuan Cui
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China
| | - Ling Du
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Jielong Wang
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Zhongzhuan Li
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Jiehong Xu
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Shiyu Ou
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Dongliang Li
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Shasha Li
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256112.30000 0004 1797 9307Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force, Fujian Medical University, Fuzhou, 350025 Fujian China
| | - Hanfang Hu
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Gang Chen
- grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| | - Zhixian Wu
- grid.12955.3a0000 0001 2264 7233Department of Hepatobiliary Disease, 900th Hospital of the Joint Logistics Support Force (Dongfang Hospital), Xiamen University, Fuzhou, 350025 Fujian China ,grid.256607.00000 0004 1798 2653Department of Gastroenterology, the Fourth Affiliated Hospital (Liuzhou Workers’ Hospital), Guangxi Medical University, Liuzhou, 545000 Guangxi China
| |
Collapse
|
7
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
8
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|