1
|
Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA, Sentis A, McCoy MW, Alexander ME. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol Evol 2020; 10:5946-5962. [PMID: 32607203 PMCID: PMC7319243 DOI: 10.1002/ece3.6332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023] Open
Abstract
Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra- and interspecific variation in predator-prey body size ratios are lacking.We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra- and interspecific predator-prey body mass ratios on the scaling of attack rates and handling times.Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium-large prey types. Attack rates for both predators peaked unimodally at intermediate predator-prey body mass ratios, while handling times generally shortened across increasing body mass ratios.We thus demonstrate effects of body size ratios on predator-prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator-prey participants.Considerations for intra- and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMARHelmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Ecology and Resource ManagementUniversity of VendaThohoyandouSouth Africa
| | - Horst Kaiser
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
| | - Olaf L. F. Weyl
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Jaimie T. A. Dick
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
| | - Arnaud Sentis
- INRAEAix Marseille UniversityUMR RECOVERAix‐en‐ProvenceFrance
| | | | - Mhairi E. Alexander
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Institute for Biomedical and Environmental Health ResearchSchool of Health and Life SciencesUniversity of the West of ScotlandPaisleyUK
- Department of Botany and ZoologyCentre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
2
|
Shea BD, Benson CW, de Silva C, Donovan D, Romeiro J, Bond ME, Creel S, Gallagher AJ. Effects of exposure to large sharks on the abundance and behavior of mobile prey fishes along a temperate coastal gradient. PLoS One 2020; 15:e0230308. [PMID: 32176723 PMCID: PMC7075566 DOI: 10.1371/journal.pone.0230308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
Top predators can exert strong influences on community structure and function, both via direct, consumptive effects, as well as through non-consumptive, fear-based effects (i.e. predation risk). However, these effects are challenging to quantify, particularly for mobile predators in marine ecosystems. To advance this field of research, here we used baited remote underwater video stations (BRUVs) to assess how the behavior of mobile fish species off Cape Cod, Massachusetts, was affected by exposure to large sharks. We categorized sites into three levels of differential shark predation exposure (white sharks, Carcharodon carcharias) and quantified the relative abundance and arrival times (elapsed time before appearing on screen) for six mobile fish prey groups to the BRUV stations. Increased large shark exposure was associated with a decrease in overall prey abundance, but the overall response was prey group-specific. Foraging of smooth dogfish, a likely important prey item for large sharks in the system, was significantly reduced in areas frequented by white sharks. Specifically, the predicted probabilities of smooth dogfish bait contacts or bite attempts occurring were reduced by factors of 5.7 and 8.4, respectively, in areas of high exposure as compared to low exposure. These modifications were underscored by a decrease in smooth dogfish abundance in areas of high exposure as well. Our results suggest that populations of large, roving sharks may induce food-related costs in prey. We discuss the implications of this work within the context of the control of risk (COR) hypothesis, for the purposes of advancing our understanding of the ecological role and effects of large sharks on coastal marine ecosystems.
Collapse
Affiliation(s)
- Brendan D. Shea
- Beneath the Waves, Herndon, Virginia, United States of America
- Three Seas Program, Northeastern University, Nahant, Massachusetts, United States of America
| | - Connor W. Benson
- Beneath the Waves, Herndon, Virginia, United States of America
- Three Seas Program, Northeastern University, Nahant, Massachusetts, United States of America
| | | | - Don Donovan
- Beneath the Waves, Herndon, Virginia, United States of America
- Thayer Academy, Braintree, Massachusetts, United States of America
| | - Joe Romeiro
- 333 Studios, Exeter, Rhode Island, United States of America
| | - Mark E. Bond
- Florida International University, North Miami, Florida, United States of America
| | - Scott Creel
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Austin J. Gallagher
- Beneath the Waves, Herndon, Virginia, United States of America
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
3
|
Phenix LM, Tricarico D, Quintero E, Bond ME, Brandl SJ, Gallagher AJ. Evaluating the effects of large marine predators on mobile prey behavior across subtropical reef ecosystems. Ecol Evol 2019; 9:13740-13751. [PMID: 31938478 PMCID: PMC6953565 DOI: 10.1002/ece3.5784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 09/25/2019] [Indexed: 11/14/2022] Open
Abstract
The indirect effect of predators on prey behavior, recruitment, and spatial relationships continues to attract considerable attention. However, top predators like sharks or large, mobile teleosts, which can have substantial top-down effects in ecosystems, are often difficult to study due to their large size and mobility. This has created a knowledge gap in understanding how they affect their prey through nonconsumptive effects. Here, we investigated how different functional groups of predators affected potential prey fish populations across various habitats within Biscayne Bay, FL. Using baited remote underwater videos (BRUVs), we quantified predator abundance and activity as a rough proxy for predation risk and analyzed key prey behaviors across coral reef, sea fan, seagrass, and sandy habitats. Both predator abundance and prey arrival times to the bait were strongly influenced by habitat type, with open homogenous habitats receiving faster arrival times by prey. Other prey behaviors, such as residency and risk-associated behaviors, were potentially driven by predator interaction. Our data suggest that small predators across functional groups do not have large controlling effects on prey behavior or stress responses over short temporal scales; however, habitats where predators are more unpredictable in their occurrence (i.e., open areas) may trigger risk-associated behaviors such as avoidance and vigilance. Our data shed new light on the importance of habitat and context for understanding how marine predators may influence prey behaviors in marine ecosystems.
Collapse
Affiliation(s)
- Lindsay M. Phenix
- Beneath the WavesHerndonVAUSA
- Three Seas ProgramNortheastern UniversityNahantMAUSA
| | | | | | - Mark E. Bond
- Florida International UniversityNorth MiamiFLUSA
| | - Simon J. Brandl
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| | | |
Collapse
|
4
|
Benson C, Shea B, de Silva C, Donovan D, Holder P, Cooke S, Gallagher A. Physiological consequences of varying large shark exposure on striped bass (Morone saxatilis). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2019-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large marine predators often aggregate seasonally in discrete locations to take advantage of optimal foraging conditions, leading to spatial and temporal variation in their exposure on other species. However, our understanding of the impacts this exposure may have on the behavior and physiology of prey is poor, especially in marine systems. Here, we evaluated the non-consumptive effects of potential exposure to large sharks (white sharks, Carcharodon carcharias (Linnaeus, 1758)) on the stress physiology of an economically important teleost, the striped bass (Morone saxatilis (Walbaum, 1792)), off Cape Cod, Massachusetts, USA. We sampled fish in habitats that varied significantly in shark exposure across 5 months and over 2 years, evaluating blood physiology stress indicators (i.e., cortisol, glucose, and lactate concentrations) and reflex impairment. None of the blood parameters were influenced by shark exposure, although we did observe subtle temperature and seasonal effects. One of the three reflex tests (the vertical orientation test) was negatively affected by shark exposure, although the mechanistic basis for this finding is unclear. This work supports the notion that predictable sources of predation pressure tend not to manifest in stress-related costs in free-ranging prey, which has implications for shaping our understanding of how large sharks influence ecosystems through non-consumptive effects.
Collapse
Affiliation(s)
- C.W. Benson
- Beneath the Waves, P.O. Box 126, Herndon, VA 20172, USA
- Three Seas Program, Northeastern University, 430 Nahant Road, MA 01908, USA
| | - B.D. Shea
- Beneath the Waves, P.O. Box 126, Herndon, VA 20172, USA
- Three Seas Program, Northeastern University, 430 Nahant Road, MA 01908, USA
| | - C. de Silva
- Beneath the Waves, P.O. Box 126, Herndon, VA 20172, USA
| | - D. Donovan
- Thayer Academy, 745 Washington Street, Braintree, MA 02184, USA
| | - P.E. Holder
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S.J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - A.J. Gallagher
- Beneath the Waves, P.O. Box 126, Herndon, VA 20172, USA
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
5
|
Gallagher AJ, Brandl SJ, Stier AC. Intraspecific variation in body size does not alter the effects of mesopredators on prey. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160414. [PMID: 28083093 PMCID: PMC5210675 DOI: 10.1098/rsos.160414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator (Paracirrhites arcatus) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.
Collapse
Affiliation(s)
- Austin J. Gallagher
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL,USA
- Beneath the Waves, Inc., Miami, FL 33133, USA
| | - Simon J. Brandl
- Beneath the Waves, Inc., Miami, FL 33133, USA
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, SantaBarbara, CA 93106,USA
| |
Collapse
|