1
|
Fernandes SO, Paul D, Lankalapalli SP, Arvapalli SR, PJ V, Palayil JK. Upper circumpolar deep water influences microbial functional gene composition and diversity along the southern Central Indian Ridge and eastern Southwest Indian Ridge. Microbiol Spectr 2025; 13:e0330623. [PMID: 39727810 PMCID: PMC11792553 DOI: 10.1128/spectrum.03306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR. Stratified water column sampling at surface, mid, turbid/plume layer, and near bottom was done along with pertinent environmental variables at various locations along the ridges. The majority of genes (~38%-41%) throughout the water column in both regions encoded for C-cycling, particularly starch degradation indicating the predominance of heterotrophy. Genes encoding for nitrate reduction and arsenic and mercury resistance were enriched in the turbid and/or near-bottom waters, suggesting a localized influence of hydrothermally derived substrates on the metabolic potential of microbial communities. Indices for microbial functional gene diversity (H = 9.18) and evenness (J = 0.90) were highest for samples from turbid waters at SWIR. Potential temperature-salinity profiles showed the presence of nutrient-rich upper circumpolar deep water (UCDW) at >2,000 m in the study areas. Principal component analysis revealed that inorganic nutrient availability largely influenced functional gene diversity in deeper waters. The study signifies that rather than hydrothermal input, nutrients brought into the region through the UCDW could have a larger impact on metabolic processes mediated by autochthonous microbial communities and consequently have implications on deep-sea productivity.IMPORTANCELittle is known about depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) waters. In the present study, a comprehensive functional gene microarray approach was used to reveal the metabolic potential and depth-wise variation in microbial functional genes along the ridges. Up to 41% of microbial functional genes at both locations encoded for C-cycling. Availability of hydrothermally derived substrates in plumes detected along the ridges triggered an increase in the abundance of genes encoding for remediation of polycyclic aromatics, nitrate reduction, and arsenic and mercury resistance. Rather than hydrothermal input, the functional gene diversity at >2,000 m was largely influenced by inorganic nutrients transported by the nutrient-rich upper circumpolar deep water. Findings of this study are expanding the existing knowledge on new sites of hydrothermal activity along CIR and SWIR and gaining insights into ecosystem functioning in the deep sea.
Collapse
Affiliation(s)
| | - Dhiraj Paul
- National Center for Microbial Resource, National Center for Cell Science, Pune, India
| | | | - Srinivas Rao Arvapalli
- National Center for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| | - Vidya PJ
- National Center for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| | - John Kurian Palayil
- National Center for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| |
Collapse
|
2
|
Hatakeyama S, Mino S, Mizobata M, Takada M, Tsuchiya J, Yamaki S, Ando Y, Sawabe T, Takai K. Hydrogenimonas leucolamina sp. nov., a hydrogen- and sulphur-oxidizing mesophilic chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Western Pacific Ocean. Int J Syst Evol Microbiol 2024; 74. [PMID: 39436681 DOI: 10.1099/ijsem.0.006553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
A novel mesophilic bacterium, strain SS33T, was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. The cells of strain SS33T were motile short rods with a single polar flagellum. The growth of strain SS33T was observed at the temperature range between 33 and 55 °C (optimum growth at 45 °C), at the pH range between 5.0 and 7.1 (optimum growth at pH 6.0) and in the presence of between 2.0 and 4.5% (w/v) NaCl [optimum growth at 3.5% (w/v)]. Strain SS33T was a facultative anaerobic chemolithoautotroph using molecular hydrogen and elemental sulphur as the sole electron donor. Nitrate, nitrous oxide, sulphate, elemental sulphur and molecular oxygen were capable of serving as the sole electron acceptor. Phylogenetic analysis based on 16S rRNA gene sequences placed strain SS33T in the genus Hydrogenimonas belonging to the class Epsilonproteobacteria. The closely related species of strain SS33T were Hydrogenimonas urashimensis SSM-Sur55T (95.96%), Hydrogenimonas thermophila EP1-55-1%T (95.75%) and Hydrogenimonas cancrithermarum ISO32T (95.24%). According to the taxonomic and physiological characteristics, it is proposed that strain SS33T was classified into a novel species of genus Hydrogenimonas, Hydrogenimonas leucolamina sp. nov., with SS33T (=JCM 39184T =KCTC 25253T) as the type strain. Furthermore, the genome comparison of Epsilonproteobacteria revealed that their [NiFe] hydrogenase genes belonging to Group 1b could be divided into two phylogenetic lineages and suggested that the reverse gyrase gene has been lost after division to the genus Hydrogenimonas.
Collapse
Affiliation(s)
- Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mana Mizobata
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mako Takada
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
3
|
Dede B, Priest T, Bach W, Walter M, Amann R, Meyerdierks A. High abundance of hydrocarbon-degrading Alcanivorax in plumes of hydrothermally active volcanoes in the South Pacific Ocean. THE ISME JOURNAL 2023; 17:600-610. [PMID: 36721059 PMCID: PMC10030979 DOI: 10.1038/s41396-023-01366-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Species within the genus Alcanivorax are well known hydrocarbon-degraders that propagate quickly in oil spills and natural oil seepage. They are also inhabitants of the deep-sea and have been found in several hydrothermal plumes. However, an in-depth analysis of deep-sea Alcanivorax is currently lacking. In this study, we used multiple culture-independent techniques to analyze the microbial community composition of hydrothermal plumes in the Northern Tonga arc and Northeastern Lau Basin focusing on the autecology of Alcanivorax. The hydrothermal vents feeding the plumes are hosted in an arc volcano (Niua), a rear-arc caldera (Niuatahi) and the Northeast Lau Spreading Centre (Maka). Fluorescence in situ hybridization revealed that Alcanivorax dominated the community at two sites (1210-1565 mbsl), reaching up to 48% relative abundance (3.5 × 104 cells/ml). Through 16S rRNA gene and metagenome analyses, we identified that this pattern was driven by two Alcanivorax species in the plumes of Niuatahi and Maka. Despite no indication for hydrocarbon presence in the plumes of these areas, a high expression of genes involved in hydrocarbon-degradation was observed. We hypothesize that the high abundance and gene expression of Alcanivorax is likely due to yet undiscovered hydrocarbon seepage from the seafloor, potentially resulting from recent volcanic activity in the area. Chain-length and complexity of hydrocarbons, and water depth could be driving niche partitioning in Alcanivorax.
Collapse
Affiliation(s)
- Bledina Dede
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wolfgang Bach
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Geoscience Department, University of Bremen, Bremen, Germany
| | - Maren Walter
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
4
|
Cheng R, Li X, Jiang L, Gong L, Geslin C, Shao Z. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. MICROBIOME 2022; 10:235. [PMID: 36566239 PMCID: PMC9789665 DOI: 10.1186/s40168-022-01441-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.
Collapse
Affiliation(s)
- Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xiaofeng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Claire Geslin
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
5
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
6
|
Chen H, Li DH, Jiang AJ, Li XG, Wu SJ, Chen JW, Qu MJ, Qi XQ, Dai J, Zhao R, Zhang WJ, Liu SS, Wu LF. Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:255-267. [PMID: 37073225 PMCID: PMC10077154 DOI: 10.1007/s42995-021-00121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Deep-sea hydrothermal vents are known as chemosynthetic ecosystems. However, high temperature vents emit light that hypothetically can drive photosynthesis in this habitat. Metagenomic studies have sporadically reported the occurrence of phototrophic populations such as cyanobacteria in hydrothermal vents. To determine how geographically and taxonomically widespread phototrophs are in deep-sea hydrothermal vents, we collected samples from three niches in a hydrothermal vent on the Southwest Indian Ridge and carried out an integrated metagenomic analysis. We determined the typical community structures of microorganisms found in active venting fields and identified populations of known potential chlorophototrophs and retinalophototrophs. Complete chlorophyll biosynthetic pathways were identified in all samples. By contrast, proteorhodopsins were only found in active beehive smoker diffusers. Taxonomic groups possessing potential phototrophy dependent on semiconductors present in hydrothermal vents were also found in these samples. This systematic comparative metagenomic study reveals the widespread distribution of phototrophic bacteria in hydrothermal vent fields. Our results support the hypothesis that the ocean is a seed bank of diverse microorganisms. Geothermal vent light may provide energy and confer a competitive advantage on phototrophs to proliferate in hydrothermal vent ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00121-y.
Collapse
Affiliation(s)
- Hong Chen
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Deng Hui Li
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Ai Jun Jiang
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Xue Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shi Jun Wu
- Zhejiang University, Hangzhou, 310027 China
| | - Jian Wei Chen
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | | | - Xiao Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Jie Dai
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Rui Zhao
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shan Shan Liu
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Aix Marseille University, Centre national de la recherche scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, L’ Institut Microbiologie, Bioénergies et Biotechnologie, 13402 Marseille, France
| |
Collapse
|
7
|
Shi H, Cheng J, Gao W, Ma M, Liu A, Hu T, Han B, Zheng L. Biodiversity and degradation potential of oil-degrading bacteria isolated from sediments of hydrothermal and non-hydrothermal areas of the Southwest Mid-Indian Ocean Ridge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26821-26834. [PMID: 34854009 DOI: 10.1007/s11356-021-17826-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, sediments from eight sites were collected from hydrothermal areas (e.g., the Tiancheng, Tianzuo, and Longqi hydrothermal areas) and non-hydrothermal area on the Southwest Mid-Indian Ocean Ridge. Using crude oil as the only carbon and energy source, 162 strains of culturable oil-degrading bacteria were isolated and obtained. The rate of oil degradation of the consortia was 39.48-46.00% in hydrothermal and non-hydrothermal areas. High-throughput sequencing found that the alpha diversity indices (e.g., Shannon and Simpson) of the communities in hydrothermal areas were higher than those in non-hydrothermal area. The species diversities of the oil-degrading bacteria were different among different hydrothermal areas. The composition of the oil-degrading bacterial species in the Tianzuo hydrothermal area tended to be more similar to that in the non-hydrothermal area. This similarity is attributed to the changes in the bacterial community that followed the cessation of hydrothermal vent eruptions at this site. The Alphaproteobacteria abundance of the oil-degrading bacteria was significantly different in oil-degrading bacteria between the hydrothermal and non-hydrothermal areas.
Collapse
Affiliation(s)
- Haolei Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Jiangfeng Cheng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ang Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tianyi Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Murdock SA, Juniper SK. Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol 2019; 21:3796-3815. [DOI: 10.1111/1462-2920.14729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/21/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Sheryl A. Murdock
- School of Earth & Ocean Sciences University of Victoria Victoria Canada
| | - S. Kim Juniper
- School of Earth & Ocean Sciences University of Victoria Victoria Canada
- Department of Biology University of Victoria Victoria Canada
| |
Collapse
|