1
|
Mashini A, Oakley CA, Peng L, Grossman AR, Weis VM, Davy SK. Proteomes of native and non-native symbionts reveal responses underpinning host-symbiont specificity in the cnidarian-dinoflagellate symbiosis. THE ISME JOURNAL 2024; 18:wrae122. [PMID: 38988135 PMCID: PMC11473927 DOI: 10.1093/ismejo/wrae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterized proteomic changes in the native symbiont Breviolum minutum during colonization of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and Breviolum minutum increased the accumulation of symbiont proteins associated with the acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding symbiont analysis to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners (i.e. native versus non-native symbionts) may impact the fitness of the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Amir Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R Grossman
- Biosphere Sciences and Engineering, The Carnegie Institution for Science, Stanford, CA 94305, United States
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Rosani U. Tracing RNA viruses associated with Nudibranchia gastropods. PeerJ 2022; 10:e13410. [PMID: 35586129 PMCID: PMC9109684 DOI: 10.7717/peerj.13410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Nudibranchia is an under-studied taxonomic group of gastropods, including more than 3,000 species with colourful and extravagant body shapes and peculiar predatory and defensive strategies. Although symbiosis with bacteria has been reported, no data are available for the nudibranch microbiome nor regarding viruses possibly associated with these geographically widespread species. Methods Based on 47 available RNA sequencing datasets including more than two billion reads of 35 nudibranch species, a meta-transcriptome assembly was constructed. Taxonomic searches with DIAMOND, RNA-dependent-RNA-polymerase identification with palmscan and viral hallmark genes identification by VirSorter2 in combination with CheckV were applied to identify genuine viral genomes, which were then annotated using CAT. Results A total of 20 viral genomes were identified as bona fide viruses, among 552 putative viral contigs resembling both RNA viruses of the Negarnaviricota, Pisuviricota, Kitrinoviricota phyla and actively transcribing DNA viruses of the Cossaviricota and Nucleocytoviricota phyla. The 20 commonly identified viruses showed similarity with RNA viruses identified in other RNA-seq experiments and can be putatively associated with bacteria, plant and arthropod hosts by co-occurence analysis. The RNA samples having the highest viral abundances showed a heterogenous and mostly sample-specific distribution of the identified viruses, suggesting that nudibranchs possess diversified and mostly unknown viral communities.
Collapse
|
4
|
Melo Clavijo J, Drews F, Pirritano M, Simon M, Salhab A, Donath A, Frankenbach S, Serôdio J, Bleidißel S, Preisfeld A, Christa G. The complete mitochondrial genome of the photosymbiotic sea slug Berghia stephanieae (Valdés, 2005) (Gastropoda, Nudibranchia). Mitochondrial DNA B Resour 2021; 6:2281-2284. [PMID: 34291161 PMCID: PMC8279152 DOI: 10.1080/23802359.2021.1914211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Berghia stephanieae (Nudibranchia, Cladobranchia) is a photosymbiotic sea slug that feeds exclusively on sea anemones from the genus Exaiptasia. It then specifically incorporates dinoflagellates belonging to the Symbiodiniaceae obtained from their prey. Here, we present the complete mitochondrial genome sequence of B. stephanieae combining Oxford Nanopore long read and Illumina short-read sequencing data. The mitochondrial genome has a total length of 14,786 bp, it contains the 13 protein-encoding genes, 23 tRNAs, and two rRNAs and is similar to other nudibranchs except for the presence of a duplicated tRNA-Ser 1.
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Zoologie und Biologiedidaktik, Wuppertal, Germany
| | - Franziska Drews
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Chemie und Biologie, Molekulare Zellbiologie und Mikrobiologie, Wuppertal, Germany
| | - Marcello Pirritano
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Chemie und Biologie, Molekulare Zellbiologie und Mikrobiologie, Wuppertal, Germany
| | - Martin Simon
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Chemie und Biologie, Molekulare Zellbiologie und Mikrobiologie, Wuppertal, Germany
| | | | - Alexander Donath
- Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany
| | - Silja Frankenbach
- Department of Biology and CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - João Serôdio
- Department of Biology and CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Sabrina Bleidißel
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Zoologie und Biologiedidaktik, Wuppertal, Germany
| | - Angelika Preisfeld
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Zoologie und Biologiedidaktik, Wuppertal, Germany
| | - Gregor Christa
- Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Zoologie und Biologiedidaktik, Wuppertal, Germany
| |
Collapse
|
5
|
Maruyama S, Weis VM. Limitations of Using Cultured Algae to Study Cnidarian-Algal Symbioses and Suggestions for Future Studies. JOURNAL OF PHYCOLOGY 2021; 57:30-38. [PMID: 33191496 DOI: 10.1111/jpy.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Much of our understanding of the cellular mechanisms underlying cnidarian-algal symbiosis comes from studying the biological differences between the partners when they are engaged in symbiosis and when they are isolated from one another. When comparing the in hospite and ex hospite states in Symbiodiniaceae, the in hospite state is represented by algae sampled from hosts, and the ex hospite state is commonly represented by cultured algae. The use of cultured algae in this comparison may introduce nutrition as a confounding variable because, while hosts are kept in nutrient-depleted conditions, culture media is nutrient rich and designed to facilitate algal growth. In this perspective, we reexamine how nutrition may be a confounding variable in studies that compare the biology of Symbiodiniaceae in hospite and in culture. We also suggest several innovations in experimental design to strengthen the comparison of the two lifestyles, including the adoption of nutritional controls, alternatives to culture for the representation of Symbiodiniaceae ex hospite, and the adoption of several proteomic approaches to find novel Symbiodiniaceae genes important for symbiosis.
Collapse
Affiliation(s)
- Shumpei Maruyama
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon, 97331, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|
6
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
7
|
Mohamed AR, Andrade N, Moya A, Chan CX, Negri AP, Bourne DG, Ying H, Ball EE, Miller DJ. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol Ecol 2020; 29:3921-3937. [PMID: 32853430 DOI: 10.1111/mec.15612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Despite the ecological significance of the mutualistic relationship between Symbiodiniaceae and reef-building corals, the molecular interactions during establishment of this relationship are not well understood. This is particularly true of the transcriptional changes that occur in the symbiont. In the current study, a dual RNA-sequencing approach was used to better understand transcriptional changes on both sides of the coral-symbiont interaction during the colonization of Acropora tenuis by a compatible Symbiodiniaceae strain (Cladocopium goreaui; ITS2 type C1). Comparison of transcript levels of the in hospite symbiont 3, 12, 48 and 72 hr after exposure to those of the same strain in culture revealed that extensive and generalized down-regulation of symbiont gene expression occurred during the infection process. Included in this "symbiosis-derived transcriptional repression" were a range of stress response and immune-related genes. In contrast, a suite of symbiont genes implicated in metabolism was upregulated in the symbiotic state. The coral data support the hypothesis that immune-suppression and arrest of phagosome maturation play important roles during the establishment of compatible symbioses, and additionally imply the involvement of some SCRiP family members in the colonization process. Consistent with previous ecological studies, the transcriptomic data suggest that active translocation of metabolites to the host may begin early in the colonization process, and thus that the mutualistic relationship can be established at the larval stage. This dual RNA-sequencing study provides insights into the transcriptomic remodelling that occurs in C. goreaui during transition to a symbiotic lifestyle and the novel coral genes implicated in symbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Qld, Australia.,Zoology Department, Faculty of Science, Benha University, Benha, Egypt.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, AIMS@JCU, Australian Institute of Marine Science, James Cook University, Townsville, Qld, Australia
| | - Natalia Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Qld, Australia.,Department of Marine Ecosystems and Impacts, James Cook University, Townsville, Qld, Australia
| | - Hua Ying
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Eldon E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
8
|
Alves Monteiro HJ, Brahmi C, Mayfield AB, Vidal-Dupiol J, Lapeyre B, Le Luyer J. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. GLOBAL CHANGE BIOLOGY 2020; 26:1271-1284. [PMID: 31692206 DOI: 10.1111/gcb.14907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.
Collapse
Affiliation(s)
| | - Chloé Brahmi
- Université de la Polynésie Française, UMR Ecosystèmes Insulaires Océaniens, Ifremer, ILM, IRD, Tahiti, Polynésie Française
| | - Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | | | - Bruno Lapeyre
- EPHE-CNRS-UPVD, USR3278-CRIOBE, Labex CORAIL, Moorea, Polynésie Française
| | - Jérémy Le Luyer
- IFREMER, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, Polynésie Française
| |
Collapse
|
9
|
Maor‐Landaw K, van Oppen MJH, McFadden GI. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 2020; 10:451-466. [PMID: 31993121 PMCID: PMC6972872 DOI: 10.1002/ece3.5910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
Collapse
Affiliation(s)
- Keren Maor‐Landaw
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | | |
Collapse
|
10
|
Du ZY, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife 2019; 8:47815. [PMID: 31307571 PMCID: PMC6634985 DOI: 10.7554/elife.47815] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022] Open
Abstract
Mutualistic interactions between free-living algae and fungi are widespread in nature and are hypothesized to have facilitated the evolution of land plants and lichens. In all known algal-fungal mutualisms, including lichens, algal cells remain external to fungal cells. Here, we report on an algal-fungal interaction in which Nannochloropsis oceanica algal cells become internalized within the hyphae of the fungus Mortierella elongata. This apparent symbiosis begins with close physical contact and nutrient exchange, including carbon and nitrogen transfer between fungal and algal cells as demonstrated by isotope tracer experiments. This mutualism appears to be stable, as both partners remain physiologically active over months of co-cultivation, leading to the eventual internalization of photosynthetic algal cells, which persist to function, grow and divide within fungal hyphae. Nannochloropsis and Mortierella are biotechnologically important species for lipids and biofuel production, with available genomes and molecular tool kits. Based on the current observations, they provide unique opportunities for studying fungal-algal mutualisms including mechanisms leading to endosymbiosis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, Germany.,Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Natalie Vande Pol
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
| | - Nathaniel E Ostrom
- Department of Integrative Biology, Michigan State University, East Lansing, United States.,DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, United States.,DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Gregory M Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States.,DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, United States
| |
Collapse
|
11
|
Monteiro EA, Güth AZ, Banha TNS, Sumida PYG, Mies M. Evidence against mutualism in an aeolid nudibranch associated with Symbiodiniaceae dinoflagellates. Symbiosis 2019. [DOI: 10.1007/s13199-019-00632-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in Moorea. Sci Rep 2019; 9:7921. [PMID: 31138834 PMCID: PMC6538640 DOI: 10.1038/s41598-019-44017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinoflagellates are characterized by different biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals’ Symbiodiniaceae community can change via shuffling and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10–18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specific rates of occurrence. However, the dynamics of the corals’ Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shuffling event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specific range of quantities, giving a unique ‘Symbiodiniaceae signature’ to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specific differences in resistance and resilience observed during environmental anomalies.
Collapse
|
13
|
Armstrong EJ, Roa JN, Stillman JH, Tresguerres M. Symbiont photosynthesis in giant clams is promoted by V-type H +-ATPase from host cells. ACTA ACUST UNITED AC 2018; 221:jeb.177220. [PMID: 30065035 DOI: 10.1242/jeb.177220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.
Collapse
Affiliation(s)
- Eric J Armstrong
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA .,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathon H Stillman
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.,Estuary & Ocean Science Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Gula RL, Adams DK. Effects of Symbiodinium Colonization on Growth and Cell Proliferation in the Giant Clam Hippopus hippopus. THE BIOLOGICAL BULLETIN 2018; 234:130-138. [PMID: 29856670 DOI: 10.1086/698265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Giant clams (subfamily Tridacnidae) house their obligate symbionts, Symbiodinium sp., in a specialized tubular system. Rapid uptake of Symbiodinium has been shown to increase early clam survival, suggesting that symbionts play an essential role in host growth and development. To determine whether symbionts influence development in the giant clam Hippopus hippopus, we compared growth patterns and cell proliferation in two groups of clams inoculated or not inoculated (control) with Symbiodinium sp. Symbiont uptake occurred continuously from days 8 to 26 post-fertilization, with, on average, ∼5% per day colonized. The control treatment grew even without symbionts (1.03 ± 0.41 µm per day, standard error). Inoculated individuals grew significantly faster (2.91 ± 0.37 µm per day) than control individuals (P < 0.001). However, daily shell length measurements did not significantly differ between treatments until day 22, and ∼97% of control individuals metamorphosed by day 24, suggesting a delay in growth effects. Consistent with this, at day 13, clam cell proliferation was not correlated with symbiont abundance in inoculated individuals (P = 0.13), while at day 26, it was (P < 0.01). The proliferating cell pattern also changed from being randomly distributed (P = 0.99) at day 13 to non-randomly distributed (P = 0.002), with increased likelihood of proliferation within ∼25 µm of a symbiont, at day 26. Our results indicate that H. hippopus has a longer Symbiodinium acquisition period than previously recorded, after which proliferation and development are enhanced but during which growth is unaffected by Symbiodinium.
Collapse
|
15
|
Mies M, Sumida PYG, Rädecker N, Voolstra CR. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|