1
|
Aslam M, Pei P, Ye P, Li T, Liang H, Zhang Z, Ke X, Chen W, Du H. Unraveling the Diverse Profile of N-Acyl Homoserine Lactone Signals and Their Role in the Regulation of Biofilm Formation in Porphyra haitanensis-Associated Pseudoalteromonas galatheae. Microorganisms 2023; 11:2228. [PMID: 37764072 PMCID: PMC10537045 DOI: 10.3390/microorganisms11092228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P. haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings offer valuable insights for future investigations exploring the role of AHL producing epiphytes and biofilms in the life cycle of P. haitanensis.
Collapse
Affiliation(s)
- Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Zezhi Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- STU-UNIVPM Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
2
|
Ashrit P, Sadanandan B, Shetty K, Vaniyamparambath V. Polymicrobial Biofilm Dynamics of Multidrug-Resistant Candida albicans and Ampicillin-Resistant Escherichia coli and Antimicrobial Inhibition by Aqueous Garlic Extract. Antibiotics (Basel) 2022; 11:antibiotics11050573. [PMID: 35625217 PMCID: PMC9137478 DOI: 10.3390/antibiotics11050573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The polymicrobial biofilm of C. albicans with E. coli exhibits a dynamic interspecies interaction and is refractory to conventional antimicrobials. In this study, a high biofilm-forming multidrug-resistant strain of C. albicans overcomes inhibition by E. coli in a 24 h coculture. However, following treatment with whole Aqueous Garlic Extract (AGE), these individual biofilms of multidrug-resistant C. albicans M-207 and Ampicillin-resistant Escherichia coli ATCC 39936 and their polymicrobial biofilm were prevented, as evidenced by biochemical and structural characterization. This study advances the antimicrobial potential of AGE to inhibit drug-resistant C. albicans and bacterial-associated polymicrobial biofilms, suggesting the potential for effective combinatorial and synergistic antimicrobial designs with minimal side effects.
Collapse
Affiliation(s)
- Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru 560054, India; (P.A.); (V.V.)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru 560054, India; (P.A.); (V.V.)
- Correspondence: or ; Tel.: +91-80-2308331; Fax: +91-80-2360-3124
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA;
| | | |
Collapse
|
3
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
4
|
AL Marjani MF, Ali FS, Authman SH, AL Kadmy IM, Abdul Amir RM. Identification of novel 1, 3-oxazole and imidazole-5-one that inhibits bacterial biofilm formation of Acinetobacter baumannii. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Abebe GM. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int J Microbiol 2020; 2020:1705814. [PMID: 32908520 PMCID: PMC7468660 DOI: 10.1155/2020/1705814] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Biofilm is a microbial association or community attached to different biotic or abiotic surfaces or environments. These surface-attached microbial communities can be found in food, medical, industrial, and natural environments. Biofilm is a critical problem in the medical sector since it is formed on medical implants within human tissue and involved in a multitude of serious chronic infections. Food and food processing surface become an ideal environment for biofilm formation where there are sufficient nutrients for microbial growth and attachment. Therefore, biofilm formation on these surfaces, especially on food processing surface becomes a challenge in food safety and human health. Microorganisms within a biofilm are encased within a matrix of extracellular polymeric substances that can act as a barrier and recalcitrant for different hostile conditions such as sanitizers, antibiotics, and other hygienic conditions. Generally, they persist and exist in food processing environments where they become a source of cross-contamination and foodborne diseases. The other critical issue with biofilm formation is their antibiotic resistance which makes medication difficult, and they use different physical, physiological, and gene-related factors to develop their resistance mechanisms. In order to mitigate their production and develop controlling methods, it is better to understand growth requirements and mechanisms. Therefore, the aim of this review article is to provide an overview of the role of bacterial biofilms in antibiotic resistance and food contamination and emphasizes ways for controlling its production.
Collapse
Affiliation(s)
- Gedif Meseret Abebe
- Wolaita Sodo University, College of Natural and Computational Science, Department of Biology, Wolaita Sodo, Ethiopia
| |
Collapse
|
6
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
7
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Buroni S, Scoffone VC, Fumagalli M, Makarov V, Cagnone M, Trespidi G, De Rossi E, Forneris F, Riccardi G, Chiarelli LR. Investigating the Mechanism of Action of Diketopiperazines Inhibitors of the Burkholderia cenocepacia Quorum Sensing Synthase CepI: A Site-Directed Mutagenesis Study. Front Pharmacol 2018; 9:836. [PMID: 30108505 PMCID: PMC6079302 DOI: 10.3389/fphar.2018.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Quorum sensing (QS) is a bacterial intercellular communication process which controls the production of major virulence factors, such as proteases, siderophores, and toxins, as well as biofilm formation. Since the inhibition of this pathway reduces bacterial virulence, QS is considered a valuable candidate drug target, particularly for the treatment of opportunistic infections, such as those caused by Burkholderia cenocepacia in cystic fibrosis patients. Diketopiperazine inhibitors of the acyl homoserine lactone synthase CepI have been recently described. These compounds are able to impair the ability of B. cenocepacia to produce proteases, siderophores, and to form biofilm, being also active in a Caenorhabditis elegans infection model. However, the precise mechanism of action of the compounds, as well as their effect on the cell metabolism, fundamental for candidate drug optimization, are still not completely defined. Here, we performed a proteomic analysis of B. cenocepacia cells treated with one of these inhibitors, and compared it with a cepI deleted strain. Our results demonstrate that the effects of the compound are similar to the deletion of cepI, clearly confirming that these molecules function as inhibitors of the acyl homoserine lactone synthase. Moreover, to deepen our knowledge about the binding mechanisms of the compound to CepI, we exploited previously published in silico structural insights about this enzyme structure and validated different candidate binding pockets on the enzyme surface using site-directed mutagenesis and biochemical analyses. Our experiments identified a region near the predicted S-adenosylmethionine binding site critically involved in interactions with the inhibitor. These results could be useful for future structure-based optimization of these CepI inhibitors.
Collapse
Affiliation(s)
- Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola C Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Edda De Rossi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|