1
|
Winnikoff JR, Milshteyn D, Vargas-Urbano SJ, Pedraza-Joya MA, Armando AM, Quehenberger O, Sodt A, Gillilan RE, Dennis EA, Lyman E, Haddock SHD, Budin I. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 2024; 384:1482-1488. [PMID: 38935710 DOI: 10.1126/science.adm7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.
Collapse
Affiliation(s)
- Jacob R Winnikoff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Aaron M Armando
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Richard E Gillilan
- Center for High-Energy X-ray Sciences, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14850, USA
| | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego Health Sciences, La Jolla, CA 92093, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Priede IG, Jamieson AJ, Bond T, Kitazato H. In situ observation of a macrourid fish at 7259 m in the Japan Trench: swimbladder buoyancy at extreme depth. J Exp Biol 2024; 227:jeb246522. [PMID: 38230425 PMCID: PMC10917060 DOI: 10.1242/jeb.246522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
A macrourid, Coryphaenoides yaquinae sp. inc., was observed to be attracted to bait and exhibiting normal foraging behaviour during a period of 80 min within view of a baited video camera on the sea floor at 7259 m - the deepest ever observation of a fish species with a swim bladder. The buoyancy provided by an oxygen-filled swim bladder at 74.4 MPa pressure was estimated to be 0.164 N, at a theoretical energy cost of 20 kJ, 200 times less than the cost of equivalent lipid buoyancy. During normal metabolism, 192 days would be required to fill the swimbladder. At these depths, oxygen is very incompressible, so changes in volume during ascent or descent are small. However, swimbladder function is crucially dependent on a very low rate of diffusion of oxygen across the swimbladder wall. The oxygen in the swimbladder could theoretically sustain aerobic metabolism for over 1 year but is unlikely to be used as a reserve.
Collapse
Affiliation(s)
- Imants G. Priede
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Alan J. Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Todd Bond
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hiroshi Kitazato
- Department of Marine Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
- Danish Center for Hadal Research, Satellite office at TUMSAT, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
3
|
Conley DA, Lattanzio MS. Active regulation of ultraviolet light exposure overrides thermal preference behaviour in eastern fence lizards. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dane A. Conley
- Department of Organismal and Environmental Biology Christopher Newport University Newport News VA USA
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology Christopher Newport University Newport News VA USA
| |
Collapse
|
4
|
Du M, Peng X, Zhang H, Ye C, Dasgupta S, Li J, Li J, Liu S, Xu H, Chen C, Jing H, Xu H, Liu J, He S, He L, Cai S, Chen S, Ta K. Geology, environment, and life in the deepest part of the world's oceans. ACTA ACUST UNITED AC 2021; 2:100109. [PMID: 34557759 PMCID: PMC8454626 DOI: 10.1016/j.xinn.2021.100109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
The hadal zone, mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans, represents the least explored habitat but one of the last frontiers on our planet. The present scientific understanding of the hadal environment is still relatively rudimentary, particularly in comparison with that of shallower marine environments. In the last 30 years, continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench. However, the geological and environmental processes that potentially affect the sedimentary, geochemical and biological processes in hadal trenches have received less attention. Here, we review recent advances in the geology, biology, and environment of hadal trenches and offer a perspective of the hadal science involved therein. For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density, outcrops of mantle and basaltic rocks, and anthropogenic pollutants at the deepest point of the world’s ocean. We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench. Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem. Future research, combined with technological advances and international cooperation, should focus on establishing the intrinsic linkage of the geology, biology, and environment of the hadal trenches. This paper provides a comprehensive review on hadal geology, environment, and biology, as well as potential interactions among them For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe The hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench The development of deep-sea technology and international cooperation will greatly promote the progress of hadal science
Collapse
Affiliation(s)
- Mengran Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Corresponding author
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Cong Ye
- China Ship Scientific Research Center, Wuxi 214082, China
| | - Shamik Dasgupta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiwei Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiangtao Li
- State Key Lab of Marine Geology, Tongji University, Shanghai 200092, China
| | - Shuangquan Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hengchao Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chuanxu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongzhou Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shun Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kaiwen Ta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
5
|
Gerringer ME, Dias AS, von Hagel AA, Orr JW, Summers AP, Farina S. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front Zool 2021; 18:16. [PMID: 33863343 PMCID: PMC8052763 DOI: 10.1186/s12983-021-00399-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that deep-sea fishes have poorly mineralized bone relative to shallower-dwelling species using data from a single family that spans a large depth range. The family Liparidae (snailfishes, Cottiformes) has representatives across the entire habitable depth range for bony fishes (0 m-> 8000 m), making them an ideal model for studying depth-related trends in a confined phylogeny. We used micro-computed tomography (micro-CT) scanning to test three aspects of skeletal reduction in snailfishes (50 species) across a full range of habitat depths: 1) reduction of structural dimensions, 2) loss of skeletal elements, and 3) reduction in bone density. Using depth data from the literature, we found that with increasing depth, the length of the dentary, neurocranium, and suborbital bones decreases. The ventral suction disk decreases width with increasing maximum habitat depth and is lost entirely in some deeper-living taxa, though not all. Although visual declines in bone density in deeper-living taxa were evident across full skeletons, individual densities of the lower jaw, vertebra, suction disk, hypural plate, and otoliths did not significantly decline with any depth metric. However, pelagic and polar taxa tended to show lower density bones compared to other species in the family. We propose that skeletal reductions allow snailfishes to maintain neutral buoyancy at great depths in the water column, while supporting efficient feeding and locomotion strategies. These findings suggest that changes in skeletal structure are non-linear and are driven not only by hydrostatic pressure, but by other environmental factors and by evolutionary ancestry, calling the existing paradigm into question.
Collapse
Affiliation(s)
- M E Gerringer
- State University of New York at Geneseo, Geneseo, NY, 14454, USA.
| | - A S Dias
- Whitman College, Walla Walla, WA, 99362, USA
| | | | - J W Orr
- Alaska Fisheries Science Center, RACE Division, NOAA Fisheries, Seattle, WA, 98115, USA
| | - A P Summers
- Friday Harbor Labs, Biology and SAFS, University of Washington, Friday Harbor, WA, 98250, USA
| | - S Farina
- Howard University, Washington, DC, 20059, USA
| |
Collapse
|
6
|
Uyeno T, Clark A. On the fit of skins with a particular focus on the biomechanics of loose skins of hagfishes. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a considerable diversity in how skins fit. Here, we review the function of both tight and loose skins and note that the latter are poorly understood. Analysis of loose skin examples suggest five functional categories: (I) freedom of movement, (II) surface area enhancement, (III) increased structural extensibility, (IV) lubrication, and (V) maladaptive examples arising through sexual or artificial selection. We investigate the skins of hagfishes as a model for understanding loose skin function by examining its structure using histology, standardized puncture resistance testing using the ASTM F1306 protocol, and the effect of internal pressure using a simple inflated balloon model. Skins of hagfishes are composed of multiple layers of cross-helically wound connective tissue fibers of a 45° angle to the longitudinal axis, resulting in a skin that functions as fabric cut “on the bias”. Hagfish skins are relatively yielding; however, skin looseness adds a “structural extensibility” that may allow hagfishes to compensate for low puncture resistance. Physical balloon models, with stiff cores that limit length changes, show that only low pressures allow short loop radii without local buckling. Hagfishes represent ideal organisms for studying loose skin function because their skins seem to fit in all functionally adaptive categories.
Collapse
Affiliation(s)
- T.A. Uyeno
- Department of Biology, Valdosta State University, 1500 North Patterson Street, Valdosta, GA 31698, USA
| | - A.J. Clark
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| |
Collapse
|
7
|
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J 2020; 287:5394-5410. [PMID: 32250538 PMCID: PMC7818408 DOI: 10.1111/febs.15317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR. Existing theory suggests that adaptation to high pressure requires a decrease in volume changes in enzymatic catalysis. Accordingly, evolved pressure tolerance must be accompanied with an important reduction in the volume change associated with pressure-promoted alteration of enzymatic activity ( Δ V PP ∘ ). Our results suggest an important revision to this paradigm. Here, we describe an opposite effect of pressure adaptation-a substantial increase in the absolute value of Δ V PP ∘ in deep-living species compared to shallow-water counterparts. With this change, the enzyme activities in abyssal and hadal species do not substantially decrease their activity with pressure increasing up to 1-2 kbar, well beyond full-ocean depth pressures. In contrast, the activity of the enzyme from the tidepool snailfish, L. florae, decreases nearly linearly from 1 to 2500 bar. The increased tolerance of LDH activity to pressure comes at the expense of decreased catalytic efficiency, which is compensated with increased enzyme contents in high-pressure-adapted species. The newly discovered strategy is presumably used when the enzyme mechanism involves the formation of potentially unstable excited transient states associated with substantial changes in enzyme-solvent interactions.
Collapse
|
8
|
Abstract
Deep-sea trenches, depths 6000-11,000 m, are characterized by high pressures, low temperatures, and absence of sunlight. These features make up the majority of the deepest marine habitat-the hadal zone-home to distinct communities from those in the surrounding abyssal plains. The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from ∼6000 to 8200 m, comprising the dominant ichthyofauna in at least six trenches worldwide. The hadal fish community is distinct from the abyssal community where elongate, scavenging fishes such as rattails (Macrouridae), cutthroat eels (Synaphobranchidae), tripodfishes (Ipnopidae), eelpouts (Zoarcidae), and cusk eels (Ophidiidae) are most common. Until recently, little was known about the biology of these deepest-living fishes, or the factors that drive their success at hadal depths. Here, I review recent investigations spanning the abyssal-hadal boundary and discuss the factors structuring these communities, including the roles of pressure adaptation, feeding ecology, and life history. Hadal fishes show specialized adaptation to hydrostatic pressure both in accumulation of the pressure-counteractant trimethylamine n-oxide and in intrinsic changes to enzymes. Stomach content and amino acid isotope analyses, and jaw morphology suggest that suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench where amphipods are increasingly abundant. Analysis of otolith growth zones suggest that snailfishes may be adapted to a seismically active, high-disturbance hadal environment by having relatively short life-spans. This review synthesizes the known literature on the planet's deepest-living fishes and informs new understanding of adaptations to life in the trenches.
Collapse
Affiliation(s)
- M E Gerringer
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
9
|
Davenport J, Phillips ND, Cotter E, Eagling LE, Houghton JDR. The locomotor system of the ocean sunfish Mola mola (L.): role of gelatinous exoskeleton, horizontal septum, muscles and tendons. J Anat 2018; 233:347-357. [PMID: 29926911 PMCID: PMC6081505 DOI: 10.1111/joa.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 11/26/2022] Open
Abstract
Adult ocean sunfish are the heaviest living teleosts. They have no axial musculature or caudal fin. Propulsion is by unpaired dorsal and anal fins; a pseudocaudal fin ('clavus') acts as a rudder. Despite common perception, young sunfish are active predators that swim quickly, beating their vertical fins in unison to generate lift-based propulsion and attain cruising speeds similar to salmon and marlin. Here we show that the thick subcutaneous layer (or 'capsule'), already known to provide positive buoyancy, is also crucial to locomotion. It provides two compartments, one for dorsal fin musculature and one for anal fin muscles, separated by a thick, fibrous, elastic horizontal septum that is bound to the capsule itself, the roof of the skull and the dorsal surface of the short vertebral column. The compartments are braced sagittally by bony haemal and neural spines. Both fins are powered by white muscles distributed laterally and red muscles located medially. The anal fin muscles are mostly aligned dorso-ventrally and have origins on the septum and haemal spines. Dorsal fin muscles vary in orientation; many have origins on the capsule above the skull and run near-horizontally and some bipennate muscles have origins on both capsule and septum. Such bipennate muscle arrangements have not been described previously in fishes. Fin muscles have hinged tendons that pass through capsular channels and radial cartilages to insertions on fin rays. The capsule is gelatinous (89.8% water) with a collagen and elastin meshwork. Greasy in texture, calculations indicate capsular buoyancy is partly provided by lipid. Capsule, septum and tendons provide elastic structures likely to enhance muscle action and support fast cruising.
Collapse
Affiliation(s)
- John Davenport
- School of BiologicalEarth and Environmental Sciences and Environmental Research InstituteUniversity College CorkCorkIreland
| | | | - Elizabeth Cotter
- School of BiologicalEarth and Environmental Sciences and Environmental Research InstituteUniversity College CorkCorkIreland
| | | | - Jonathan D. R. Houghton
- School of Biological SciencesQueen's University BelfastBelfastUK
- Queen's Marine LaboratoryPortaferryUK
| |
Collapse
|