1
|
Tale Masoule MS, Baffoe E, Ghahremaninezhad A. Mechanisms of Air Entraining of Proteins in Cementitious Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13042-13059. [PMID: 38874554 DOI: 10.1021/acs.langmuir.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
While few prior studies examined the air-entraining properties of proteins in cementitious materials, the underlying mechanisms of proteins' air entraining and the interactions between proteins and cement have not been studied in the past. The significance of this article is to address this knowledge gap by investigating the effect of proteins on relevant factors that affect air entraining in cement paste and establishing an understanding of the mechanism of air entrainment with proteins. These factors include the surface tension of pore solution, protein adsorption on cement particles, cement paste hydrophobization, and flow of fresh paste. Thirteen different proteins were used to investigate the effect of a wide range of protein characteristics on air entraining. Proteins decreased the pore solution surface tension to different degrees. At low concentrations, the adsorption of proteins on cement particles slightly affected the pore solution surface tension. Protein adsorption on cement particles showed a wide range of adsorption isotherms. Proteins generally increased the flow of paste due to electrostatic repulsion between cement particles because of the adsorption of negatively charged proteins on cement particles, as well as the ball-bearing effect of bubbles in fresh paste. The surface hydrophobicity was increased in pastes with proteins. A detailed microcomputed tomography (micro-CT) analysis showed very different air void microstructures in pastes with various proteins. While a relatively strong correlation was observed between air void porosity and surface hydrophobicity, the correlation between air void porosity and the surface tension of pore solution was weak. This indicates that the accumulation of hydrophobized cement particles on the air bubble in the fresh paste, refered to as the Pickering effect, is the main mechanism of air entraining of proteins in the paste. It was shown that a high air void porosity occurs in an intermediate range of flow.
Collapse
Affiliation(s)
- Mohammad Sadegh Tale Masoule
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Elvis Baffoe
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Ali Ghahremaninezhad
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
2
|
Babiak PM, Minnich J, Torres JE, Madduri S, Liu JC. Recombinant Elastin-Based Bioelastomers for Biomedical Applications. Methods Mol Biol 2024; 2720:101-113. [PMID: 37775660 DOI: 10.1007/978-1-0716-3469-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Recombinant elastin-based proteins (ELPs) are used in applications that include therapeutics, drug delivery, and tissue engineering due to their biocompatibility and unique ability to undergo simple coacervation. Here, we describe a cost-effective method to purify ELPs utilizing salt precipitation and their reversible phase transition property when heated above their lower critical solution temperature (LCST). Furthermore, we describe the post-translational modification of converting tyrosine residues to L-3,4-dihydroxyphenylalanine (DOPA) for adhesive applications.
Collapse
Affiliation(s)
- Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jason Minnich
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sathvik Madduri
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Hollingshead S, Torres JE, Wilker JJ, Liu JC. Effect of Cross-Linkers on Mussel- and Elastin-Inspired Adhesives on Physiological Substrates. ACS APPLIED BIO MATERIALS 2022; 5:630-641. [PMID: 35080852 DOI: 10.1021/acsabm.1c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surgical adhesives can be useful in wound closure because they reduce the risk of infection and pain associated with sutures and staples. However, there are no commercially available surgical adhesives for soft tissue wound closure. To be effective, soft tissue adhesives must be soft and flexible, strongly cohesive and adhesive, biocompatible, and effective in a moist environment. To address these criteria, we draw inspiration from the elasticity and resilience of elastin proteins and the adhesive of marine mussels. We used an elastin-like polypeptide (ELP) for the backbone of our adhesive material due to its elasticity and biocompatibility. A mussel-inspired adhesive molecule, l-3,4-dihydroxyphenylalanine (DOPA), was incorporated into the adhesive to confer wet-setting adhesion. In this study, an ELP named YKV was designed to include tyrosine residues and lysine residues, which contain amine groups. A modified version of YKV, named mYKV, was created through enzymatic conversion of tyrosine residues into DOPA. The ELPs were combined with iron(III) nitrate, sodium periodate, and/or tris(hydroxymethyl)phosphine (THP) cross-linkers to investigate the effect of DOPA- and amine-based cross-linking on adhesion strength and cure time on porcine skin in a warm, humid environment. Incorporation of DOPA into the ELP increased adhesive strength by 2.5 times and reduced failure rates. Iron cross-linkers improved adhesion in the presence of DOPA. THP increased adhesion for all proteins tested even in the absence of DOPA. Using multiple cross-linkers in a single formulation did not significantly improve adhesion. The adhesives with the highest performance (iron nitrate mixed with mYKV and THP mixed with YKV or mYKV) on porcine skin had 10-18 times higher adhesion than a commercial sealant and reached appreciable adhesive strength within 10 min.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Weldon School of Biomedical Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Choi Y, Kang K, Son D, Shin M. Molecular Rationale for the Design of Instantaneous, Strain-Tolerant Polymeric Adhesive in a Stretchable Underwater Human-Machine Interface. ACS NANO 2022; 16:1368-1380. [PMID: 35006677 DOI: 10.1021/acsnano.1c09393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strain-tolerant reversible adhesion under harsh mechanical deformation is important for realizing long-lasting polymeric adhesives. Despite recent advances, cohesive failure within adhesives remains a critical problem that must be solved to achieve adhesion that is robust against humidity, heat, and mechanical stress. Here, we report a molecular rationale for designing an instantaneous polymeric adhesive with high strain tolerance (termed as iPASTE) even in a stretchable human-machine interface. The iPASTE consists of two biocompatible and eco-friendly polymers, linearly oligomerized green tea extracts, and poly(ethylene glycol) for densely assembled networks via dynamic and reversible hydrogen bonds. Other than the typical approach containing nanoclay or branched adhesive precursors, the linear configuration and conformation of such polymer chains within iPASTE lead to strong and moisture-resistant cohesion/adhesion. Based on the strain-tolerant adhesion of iPASTE, it was demonstrated that a subaqueous interactive human-machine interface integrated with a robot arm and a gold nanomembrane strain-sensitive electronic skin can precisely capture a slithery artificial fish by using finger gesture recognition.
Collapse
Affiliation(s)
| | | | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| |
Collapse
|
5
|
Hollingshead S, Liu JC. pH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol Biosci 2020; 20:e1900369. [PMID: 32090483 DOI: 10.1002/mabi.201900369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Ionizable amino acids in protein-based hydrogels can confer pH-responsive behavior. Because elastin-like polypeptides (ELPs) have an established sequence and can crosslink to form hydrogels, they are an ideal system for creating pH-sensitive materials. This study examines different parameters that might affect pH-sensitive behavior and characterizes the mechanical and physical properties between pH 3 and 11 of three ELP-based crosslinked hydrogels. The first finding is that varying the amount of crosslinker affects the overall stiffness and resilience of the hydrogels but does not strongly affect water content, swelling ratio, or pH sensitivity. Second, the choice of two popular tag sequences, which vary in histidine and aspartic acid content, does not have a strong effect on pH-sensitive properties. Last, selectively blocking lysine and tyrosine residues through acetylation significantly decreases the pH-sensitive zeta potential. Acetylated hydrogels also demonstrate different behavior at low pH values with reduced swelling, reduced water content, and higher stiffness. Overall, this work demonstrates that ELP hydrogels with ionizable groups are promising materials for environmentally-responsive applications such as drug delivery, tissue engineering, and microfluidics.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907-2032, USA
| |
Collapse
|
6
|
Lin CY, Liu JC. Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides. J Mater Chem B 2019; 7:5245-5256. [PMID: 31384872 PMCID: PMC7098454 DOI: 10.1039/c9tb00821g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin-like polypeptides (ELPs) are recombinant protein domains exhibiting lower critical solution temperature (LCST) behavior. This LCST behavior is controlled not only by intrinsic factors including amino acid composition and polypeptide chain length but also by non-ELP fusion domains. Here, we report that the presence of a composite non-ELP sequence that includes both His and T7 tags or a short Ser-Lys-Gly-Pro-Gly (SKGPG) sequence can dramatically change the LCST behavior of a positively-charged ELP domain. Both the His and T7 tags have been widely used in recombinant protein design to enable affinity chromatography and serve as epitopes for protein detection. The SKGPG sequence has been used to improve the expression of ELPs. Both the composite tag and the SKGPG sequence are <15% of the total length of the ELP fusion proteins. Despite the small size of the composite tag, its incorporation imparted pH-sensitive LCST behavior to the positively-charged ELP fusion protein. This pH sensitivity was not observed with the incorporation of the SKGPG sequence. The pH sensitivity results from both electrostatic and hydrophobic interactions between the composite tag and the positively-charged ELP domain. The hydrophobicity of the composite tag also alters the ELP interaction with Hofmeister salts by changing the overall hydrophobicity of the fusion protein. Our results suggest that incorporation of short tag sequences should be considered when designing temperature-responsive ELPs and provide insights into utilizing both electrostatic and hydrophobic interactions to design temperature-responsive recombinant proteins as well as synthetic polymers.
Collapse
Affiliation(s)
- Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Dang QD, Moon JR, Jeon YS, Kim J. Supramolecular adhesive gels based on biocompatible poly(2‐ethyl‐2‐oxazoline) and tannic acid via hydrogen bonding complexation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Quoc Dat Dang
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Jong Ryul Moon
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Young Sil Jeon
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Ji‐Heung Kim
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| |
Collapse
|
8
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|
9
|
Nam HG, Nam MG, Yoo PJ, Kim JH. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. SOFT MATTER 2019; 15:785-791. [PMID: 30638244 DOI: 10.1039/c8sm02144a] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
When multiple intermolecular interactions occur simultaneously, complexed molecules undergo gelation by inter-cohesive bonding, inducing a pseudo-crosslinking effect to form a supramolecular gel. Among the number of substances that can induce supramolecular assembly, phenolic species such as 3,4-dihydroxy-l-phenylalanine (DOPA) are widely utilized for synthesizing adhesive materials. However, despite the strong adhesion capability of monomeric phenol, it lacks cohesive strength and rarely forms a supramolecular gel to secure its mechanical properties. In this study, to overcome this obstacle, we synthesized a supramolecular coacervate hydrogel by simply mixing poly(N-vinylpyrrolidone) (PVP) and tannic acid (TA), resulting in strong cohesive interactions by virtue of the larger molecular size of TA and reinforced molecular interactions attributed to the presence of galloyl groups with a high density. We further analyzed the rheological and adhesive properties of PVP-TA coacervate hydrogels, revealing that they could exhibit not only a self-healing property, but also super adhesive properties with an average adhesion strength of 3.71 MPa on a glass substrate, which is >4 times stronger than that of conventional PVP.
Collapse
Affiliation(s)
- Hyeon Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|