1
|
Paszkiewicz S, Irska I, Zubkiewicz A, Walkowiak K, Rozwadowski Z, Dryzek J, Linares A, Nogales A, Ezquerra TA. Supramolecular structure, relaxation behavior and free volume of bio-based poly(butylene 2,5-furandicarboxylate)- block-poly(caprolactone) copolyesters. SOFT MATTER 2023; 19:959-972. [PMID: 36633480 DOI: 10.1039/d2sm01359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (β1 and β2), whereas the homopolymer PBF exhibited a single β-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Izabela Irska
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Agata Zubkiewicz
- Department of Physics, West Pomeranian University of Technology, Al. Piastow 48, PL-70311 Szczecin, Poland
| | - Konrad Walkowiak
- Department of Materials Technologies, West Pomeranian University of Technology, Al. Piastow 19, PL-70310 Szczecin, Poland.
| | - Zbigniew Rozwadowski
- Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastów 42, PL-71065 Szczecin, Poland
| | - Jerzy Dryzek
- Institute of Nuclear Physics PAS, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
| | - Amelia Linares
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
2
|
Recyclable Shape-Memory Waterborne Polyurethane Films Based on Perylene Bisimide Modified Polycaprolactone Diol. Polymers (Basel) 2021; 13:polym13111755. [PMID: 34072035 PMCID: PMC8198087 DOI: 10.3390/polym13111755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, much attention is given to the functionality and recyclability of waterborne polyurethane (WPU). Herein, ε-caprolactone was used as a chain extender for grafting onto perylene bisimide (PBI) and 1,4-butanediol (BDO) via ring-opening reactions to obtain PBI-PCL and BDO- PCL. Then, two kinds of WPU, namely PBI-WPU (PWPU) and BDO-WPU (BWPU), were fabricated using PBI-PCL/polytetrahydrofuran ether glycol (PTMG) and BDO-PCL/PTMG, respectively, as mixed soft segments. The properties and appearance of PWPU and BWPU emulsions were analyzed in terms of particle size, zeta potential and TEM images, and the results showed that PWPU emulsions had uniform particle size distribution and decent storage stability. AFM and DMA results revealed that PWPU films possessed a more significant degree of microphase separation and a higher glass transition temperature (Tg) than BWPU films. The PWPU films displayed good shape-memory and mechanical properties, with tensile strength up to 58.25 MPa and elongation at break up to 1241.36%. TGA analysis indicated that PWPU films had better thermal stability than BWPU films. More importantly, the PWPU films could be dissolved in a mixed solvent of acetone/ethanol (v/v = 2:1) at room temperature. The dissolved PWPU could be dispersed in deionized water to prepare waterborne polyurethane again. After the recycling process was repeated three times, the recycled PWPU emulsion still exhibited good storage stability. The recycled PWPU films maintained their original thermal and mechanical properties. Comparing the properties of BWPU and PWPU showed that the soft segment structure had important influence on waterborne polyurethane performance. Therefore, PWPU may have great potential applications in making recycling and shape-memory coating or paint.
Collapse
|
3
|
Self-assembly and rheological behavior of chloramphenicol-based poly(ester ether)urethanes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02545-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Progress in the Synthesis of Bifunctionalized Polyhedral Oligomeric Silsesquioxane. Polymers (Basel) 2019; 11:polym11122098. [PMID: 31847358 PMCID: PMC6960853 DOI: 10.3390/polym11122098] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) has been considered as one of the most promising nanofillers in academic and industrial research due to its unique multifunctional nanostructure, easy functionalization, hybrid nature, and high processability. The progress of POSS has been extensive, particularly applications based on single- or multiple-armed POSS. In polymer hybrids, in order to enhance the properties, bifunctional POSS has been incorporated into the backbone chain of the polymer. This review summarizes recent developments in the synthesis, modification, and application of bifunctional POSS-containing composite materials. This includes amino-POSS, hydroxyl-POSS, aromatic ring-POSS, ether-POSS, and vinyl groups-POSS and their applications, exemplified by polyurethanes (PUs) and polyimides (PIs). In addition, the review highlights the enhancement of thermal, mechanical, and optical properties of the composites.
Collapse
|
5
|
Song X, Zhang X, Li T, Li Z, Chi H. Mechanically Robust Hybrid POSS Thermoplastic Polyurethanes with Enhanced Surface Hydrophobicity. Polymers (Basel) 2019; 11:E373. [PMID: 30960357 PMCID: PMC6419223 DOI: 10.3390/polym11020373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/16/2023] Open
Abstract
A series of hybrid thermoplastic polyurethanes (PUs) were synthesized from bi-functional polyhedral oligomeric silsesquioxane (B-POSS) and polycaprolactone (PCL) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent for the first time. The newly synthesized hybrid materials were fully characterized in terms of structure, morphology, thermal and mechanical performance, as well as their toughening effect toward polyesters. Thermal gravimeter analysis (TGA) and differential scanning calorimetry (DSC) showed enhanced thermal stability by 76 °C higher in decomposition temperature (Td) of the POSS PUs, and 22 °C higher glass transition temperature (Tg) when compared with control PU without POSS. Static contact angle results showed a significant increment of 49.8° and 53.4° for the respective surface hydrophobicity and lipophilicity measurements. More importantly, both storage modulus (G') and loss modulus (G'') are improved in the hybrid POSS PUs and these parameters can be further adjusted by varying POSS content in the copolymer. As a biodegradable hybrid filler, the as-synthesized POSS PUs also demonstrated a remarkable effect in toughening commercial polyesters, indicating a simple yet useful strategy in developing high-performance polyester for advanced biomedical applications.
Collapse
Affiliation(s)
- Xiuhuan Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoxiao Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|