1
|
Pentlavalli S, Coulter SM, An Y, Cross ER, Sun H, Moore JV, Sabri AB, Greer B, Vora L, McCarthy HO, Laverty G. D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention. J Control Release 2025; 379:30-44. [PMID: 39724948 DOI: 10.1016/j.jconrel.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
New multipurpose prevention technology products for use by women, focused on reducing HIV infection and preventing unwanted pregnancies, are a global health priority. Discreet long-acting formulations will empower women with greater choice around their sexual health. This paper outlines the development of a long-acting technology that enables multiple drugs to be incorporated within one injectable platform. This fixed-dose combination product is formed from a phosphorylated D-peptide (naphthalene-2-ly)-acetyl-diphenylalanine-lysine-tyrosine-glycine-OH (Napffky(p)G-OH) that enables the highly hydrophobic drugs MIV-150 (HIV antiretroviral) and etonogestrel (contraceptive) to be solubilized together within aqueous solvents. Upon subcutaneous injection, this D-peptide-drug combination self-assembles in response to phosphatase enzymes present within the skin space to form an in situ forming drug-releasing hydrogel depot. Oscillatory rheology confirmed the formation of hydrogels, which began within ∼10 s exposure to 3.98 U/mL phosphatase enzymes and continued for ∼198 mins for a Napffk(MIV-150)y(p)G-OH + Napffk(ENG)y(p)G-OH combination (8:2 ratio). Biostability against proteases, an important consideration for long-acting injectables, was demonstrated for at least 28 days in vitro. Covalent attachment of each drug to the D-peptide via an ester linkage enabled sustained release of the drug in an unmodified form via hydrolysis of the D-peptide-drug linker. This significantly reduced the initial drug burst. Low toxicity was also demonstrated in vitro via cell culture (MTS, LHS, Live/Dead®) and within in vivo studies (H&E staining). The fixed dose combination was able to deliver clinically relevant concentrations of each drug to Sprague-Dawley rats for at least 49 days, providing proof-of-concept for the use of hydrogel-forming D-peptides (Napffky(p)G-OH) as a long-acting injectable platform for the delivery of multiple hydrophobic drugs.
Collapse
Affiliation(s)
- Sreekanth Pentlavalli
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Sophie M Coulter
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Yuming An
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Emily R Cross
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Han Sun
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Brett Greer
- School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, United Kingdom
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Garry Laverty
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| |
Collapse
|
2
|
Marcano RGV, Khalil NM, de Lurdes Felsner M, Mainardes RM. Mitigating amphotericin B cytotoxicity through gliadin-casein nanoparticles: Insights into synthesis, optimization, characterization, in vitro release and cytotoxicity evaluation. Int J Biol Macromol 2024; 260:129471. [PMID: 38237837 DOI: 10.1016/j.ijbiomac.2024.129471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Amphotericin B (AmB) is a widely used antifungal agent; however, its clinical application is limited due to severe side effects and nephrotoxicity associated with parenteral administration. In recent years, there has been growing interest in the utilization of food-grade materials as innovative components for nanotechnology-based drug delivery systems. This study introduces gliadin/casein nanoparticles encapsulating AmB (AmB_GliCas NPs), synthesized via antisolvent precipitation. Formulation was refined using a 24 factorial design, assessing the influence of gliadin and casein concentrations, as well as organic and aqueous phase volumes, on particle size, polydispersity index (PDI), and zeta potential. The optimal composition with 2 % gliadin, 0.5 % casein, and a 1:5 organic-to-aqueous phase ratio, yielded nanoparticles with a 442 nm size, a 0.307 PDI, a -20 mV zeta potential, and 82 % entrapment efficiency. AmB was confirmed to be amorphous within the nanoparticles by X-ray diffraction. These NPs released AmB sustainably over 96 h, primarily in its monomeric form. Moreover, NPs maintained stability in simulated gastrointestinal fluids with minimal drug release and showed significantly lower hemolytic activity and cytotoxicity on Vero cells than free AmB, suggesting their promise for oral AmB delivery.
Collapse
Affiliation(s)
- Rossana Gabriela Vásquez Marcano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Maria de Lurdes Felsner
- Departamento de Química, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St, 838, 85040-167 Guarapuava, PR, Brazil.
| |
Collapse
|
3
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
4
|
Lebedenko C, Murray ME, Goncalves BG, Perez DS, Lambo DJ, Banerjee IA. Interactions of Nanoscale Self-Assembled Peptide-Based Assemblies with Glioblastoma Cell Models and Spheroids. ACS OMEGA 2023; 8:12124-12143. [PMID: 37033803 PMCID: PMC10077566 DOI: 10.1021/acsomega.2c08049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Peptide nanoassemblies have garnered remarkable importance in the development of novel nanoscale biomaterials for drug delivery into tumor cells. Taking advantage of receptor mediated recognition of two known peptides, angiopep-2 (TFFYGGSRGKRNNFKTEEY) and A-COOP-K (ACGLSGLC10 VAK) that bind to the over-expressed receptors low density lipoprotein (LRP-1) and fatty acid binding protein (FABP3) respectively, we have developed new peptide conjugates by combining the anti-inflammatory, antitumor compound azelaic acid with angiopep-2, which efficiently self-assembled into nanofibers. Those nanofibers were then functionalized with the A-COOP-K sequence and formed supramolecular hierarchical structures that were found to entrap the chemotherapeutic drug doxorubicin efficaciously. Furthermore, the nanoassemblies were found to release the drug in a dose-dependent manner and showed a stepwise increase over a period of 2 weeks under acidic conditions. Two cell lines (U-87-MG and U-138-MG) were utilized as models for glioblastoma cells grown in the presence of serum and under serum-free conditions to mimic the growth conditions of natural tumors. The drug entrapped assemblies were found to inhibit the cell proliferation of both U-87 and U-138MG glioblastoma cells. Three dimensional spheroids of different sizes were grown to mimic the tumors and evaluate the efficacy of drug release and internalization. Our results indicated that the nanoassemblies were found to have higher internalization of DOX and were well-spread throughout the spheroids grown, particularly under serum-free conditions. The nanoassemblies also displayed blood-brain barrier penetration when tested with a multicellular in vitro model. Such self-assembled nanostructures with targeting ability may provide a suitable platform for the development of new peptide-based biomaterials that can provide more insights about the mechanistic approach for drug delivery for not only 2D cell cultures but also 3D tumoroids that mimic the tumor microenvironments.
Collapse
|
5
|
Natarajan A, Rangan K, Vadrevu R. Self-assembly of a peptide sequence, EKKE, composed of exclusively charged amino acids: Role of charge in morphology and lead binding. J Pept Sci 2023; 29:e3451. [PMID: 36098076 DOI: 10.1002/psc.3451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
The self-assembly of peptides is influenced by their amino acid sequence and other factors including pH, charge, temperature, and solvent. Herein, we explore whether a four-residue sequence, EKKE, consisting of exclusively charged amino acids shows the propensity to form self-assembled ordered nanostructures and whether the overall charge plays any role in morphological and functional properties. From a combination of experimental data provided by Thioflavin T fluorescence, Congo red absorbance, circular dichroism spectroscopy, dynamic light scattering, field emission-scanning electron microscopy, atomic force microscopy, and confocal microscopy, it is clear that the all-polar peptide and charged EKKE sequence shows a pH-dependent tendency to form amyloid-like structures, and the self-assembled entities under acidic, basic and neutral conditions exhibit morphological variation. Additionally, the ability of the self-assembled amyloid nanostructures to bind to the toxic metal, lead (Pb2+ ), was demonstrated from the analysis of the ultraviolet absorbance and X-ray photoelectron spectroscopy data. The modulation at the sequence level for the amyloid-forming EKKE scaffold can further extend its potential role not only in the remediation of other toxic metals but also towards biomedical applications.
Collapse
Affiliation(s)
- Aishwarya Natarajan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
6
|
|
7
|
Silva-Carvalho R, Leão T, Gama FM, Tomás AM. Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules 2022; 23:1169-1182. [DOI: 10.1021/acs.biomac.1c01451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Leão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco M. Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M. Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Silva-Carvalho R, Leão T, Bourbon AI, Gonçalves C, Pastrana L, Parpot P, Amorim I, Tomas AM, Portela da Gama M. Hyaluronic acid-Amphotericin B Nanocomplexes: a Promising Anti-Leishmanial Drug Delivery System. Biomater Sci 2022; 10:1952-1967. [DOI: 10.1039/d1bm01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic...
Collapse
|
9
|
Fabrication of amphotericin B-loaded electrospun core-shell nanofibers as a novel dressing for superficial mycoses and cutaneous leishmaniasis. Int J Pharm 2021; 606:120911. [PMID: 34298105 DOI: 10.1016/j.ijpharm.2021.120911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Amphotericin B (AmB) is an antifungal and antiparasitic agent that is the main drug used for the treatment of mycoses infections and leishmaniasis. However, its high toxicity and side effects are the main difficulties attributed to its application. In this study, to minimize its harmful effects, AmB-loaded core-shell nanofibers were fabricated, using polyvinyl alcohol, chitosan, and AmB as the core, and polyethylene oxide and gelatin as the shell-forming components. The nanofibers were characterized, using scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, tensile test, drug release, and MTT assay. The results showed that the prepared nanofibers were smooth and had a core-shell structure with almost no cytotoxicity against fibroblast cells and the release study suggested that the core-shell structure decreased the burst release. The disk diffusion assay revealed that the nanofibrous mats at different AmB concentrations exhibited significant activity against all the eight evaluated fungal species with the inhibition zones of 1.4-2.6 cm. The flow cytometry assay also showed that the prepared nanofibrous mat significantly killed Leishmania major promastigotes up to 84%. The obtained results indicated that this AmB-loaded nanofibrous system could be a suitable candidate for a topical drug delivery system for the treatment of both superficial mycoses and cutaneous leishmaniasis.
Collapse
|
10
|
Oliveira MJAD, Villegas GME, Motta FD, Fabela-Sánchez O, Espinosa-Roa A, Fotoran WL, Peixoto JC, Tano FT, Lugão AB, Vásquez PAS. Influence of gamma radiation on Amphotericin B incorporated in PVP hydrogel as an alternative treatment for cutaneous leishmaniosis. Acta Trop 2021; 215:105805. [PMID: 33387468 DOI: 10.1016/j.actatropica.2020.105805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Amphotericin B (Amph-B) is an antifungal drug used intravenously for the treatment of leishmaniasis. Side-effects from Amph-B treatment can arise such as cardiac arrhythmia and renal dysfunctions, which will lead to discontinuation of treatment. Unfortunately, patients in endemic countries do not have access to alternative therapies. The objective of this study was to analyze the effects of Cobalt-60 gamma irradiation on crosslinking polymeric hydrogels (Hydg) and the incorporation of Amph-B into the gel as a controlled-release drug delivery alternative. Polyvinylpyrrolidone (PVP)/Amph-B solutions were irradiated with 15 kGy at 0 °C and 25 °C. The drug's stability was ascertained by UV-visible spectrometry, liquid chromatography/mass spectrometry and proton nuclear magnetic resonance. Irradiated Hydg/Amph-B achieved similar stability to the standard Amph-B solution and was enough to promote hydrogel crosslinking. In vitro trials were carried out to ensure Amph-B was still biologically active after irradiation. The results from flow cytometry and MTT assay show that Amph-B had an IC50 = 16.7 nM. A combination of Hydg at 1.324 gmL-1 and Amph-B at 25.1 nM for 24 h lead to the greatest inhibition of L. amazonensis promastigotes, and could be used as an alternative treatment method for cutaneous leishmaniosis.
Collapse
|
11
|
Goel H, Gupta N, Santhiya D, Dey N, Bohidar HB, Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int J Biol Macromol 2021; 174:240-253. [PMID: 33515570 DOI: 10.1016/j.ijbiomac.2021.01.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
In this report, we discuss the design of a novel collagen/pectin (CP) hybrid composite hydrogel (CPBG) containing in-situ mineralized bioactive glass (BG) particles to simulate an integrative 3D cell environment. Systematic analysis of the CP sol revealed collagen and pectin molecules interacted regardless of both possessing similar net negative charge through the mechanism of surface patch binding interaction. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed this associative interaction which resulted in the formation of a hybrid crosslinked network with the BG nanoparticles acting as pseudo crosslink junctions. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and Transmission Electron Microscopy (TEM) results confirmed uniform mineralization of BG particles, and their synergetic interaction with the network. The in-vitro bioactivity tests on CPBG indicated the formation of bone-like hydroxyapatite (Ca10(PO4)6(OH)2) microcrystals on its surface after interaction with simulated body fluid. This hydrogel was loaded with a model antifungal drug amphotericin-B (AmB) and tested against Candida albicans. The AmB release kinetics from the hydrogel followed the Fickian mechanism and showed direct proportionality to gel swelling behavior. Rheological analysis revealed the viscoelastic compatibility of CPBG for the mechanical load bearing applications. Cell viability tests indicated appreciable compatibility of the hydrogel against U2OS and HaCaT cell lines. FDA/PI on the hydrogel portrayed preferential U2OS cell adhesion on hydrophobic hydroxyapatite layer compared to hydrophilic surfaces, thereby promising the regeneration of both soft and hard tissues.
Collapse
Affiliation(s)
- Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Nidhi Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India.
| | - Namit Dey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Himadri B Bohidar
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India.
| | - Aditi Bhattacharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
12
|
Flores Dalla Lana D, Neiva Lavorato S, Minussi Giuliani L, Cruz L, Lopes W, Henning Vainstein M, Camargo Fontana I, Rigon Zimmer A, Araújo Freitas M, Andrade SF, José Alves R, Meneghello Fuentefria A. Discovery of a novel and selective fungicide that targets fungal cell wall to treat dermatomycoses: 1,3‐bis(3,4‐dichlorophenoxy)propan‐2‐aminium chloride. Mycoses 2019; 63:197-211. [DOI: 10.1111/myc.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Daiane Flores Dalla Lana
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Stefânia Neiva Lavorato
- Centro das Ciências Biológicas e da Saúde Universidade Federal do Oeste da Bahia Bahia Brazil
| | - Laura Minussi Giuliani
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria Santa Maria Brazil
| | - Letícia Cruz
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria Santa Maria Brazil
| | - William Lopes
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | - Igor Camargo Fontana
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Aline Rigon Zimmer
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Murillo Araújo Freitas
- Centro das Ciências Biológicas e da Saúde Universidade Federal do Oeste da Bahia Bahia Brazil
| | - Saulo Fernandes Andrade
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Programa de Pós‐Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos Faculdade de Farmácia Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Programa de Pós‐Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
13
|
Compressed nanofibrous oral tablets: An ingenious way for controlled release kinetics of Amphotericin-B loaded gelatin nanofibers. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Alves D, Vaz AT, Grainha T, Rodrigues CF, Pereira MO. Design of an Antifungal Surface Embedding Liposomal Amphotericin B Through a Mussel Adhesive-Inspired Coating Strategy. Front Chem 2019; 7:431. [PMID: 31275922 PMCID: PMC6591271 DOI: 10.3389/fchem.2019.00431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023] Open
Abstract
Microbial colonization of urinary catheters remains a serious problem for medicine as it often leads to biofilm formation and infection. Among the approaches reported to deal with this problem, surfaces functionalization to render them with antimicrobial characteristics, comprises the most promising one. Most of these strategies, however, are designed to target bacterial biofilms, while fungal biofilms are much less taken into account. In real-life settings, fungi will be inevitably found in consortium with bacteria, especially in the field of biomaterials. The development of antifungal coating strategies to be combined with antibacterial approaches will be pivotal for the fight of biomaterial-associated infections. The main goal of the present study was, therefore, to engineer an effective strategy for the immobilization of liposomal amphotericin B (LAmB) on polydimethylsiloxane (PDMS) surfaces to prevent Candida albicans colonization. Immobilization was performed using a two-step mussel-inspired coating strategy, in which PDMS is first immersed in dopamine solution. Its polymerization results in the deposition of a thin adherent film, called polydopamine (pDA), which allowed the incorporation of LAmB, afterwards. Different concentrations of LAmB were screened in order to obtain a contact-killing surface with no release of LAmB. Surface characterization confirmed the polymerization of dopamine and further functionalization with LAmB yielded surfaces with less roughness and more hydrophilic features. The proposed coating strategy rendered the surfaces of PDMS with the ability to prevent the attachment of C. albicans and kill the adherent cells, without toxicity toward mammalian cells. Overall results showed that LAmB immobilization on a surface retained its antifungal activity and reduced toxicity, holding therefore a great potential to be applied for the design of urinary catheters. Since the sessile communities commonly found associated to these devices exhibit a polymicrobial nature, the next challenge will be to co-immobilize LAmB with antibacterial agents to prevent the establishment of catheter-associated urinary tract infections (CAUTI).
Collapse
Affiliation(s)
- Diana Alves
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Ana Teresa Vaz
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Tânia Grainha
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Célia F Rodrigues
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
15
|
Zhou X, He J, Zhou C. Strategies from nature: polycaprolactone-based mimetic antimicrobial peptide block copolymers with low cytotoxicity and excellent antibacterial efficiency. Polym Chem 2019. [DOI: 10.1039/c8py01394b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PCL16-b-Kn diblock copolymers exhibit excellent antibacterial activities and low cytotoxicity. Meanwhile, they act by the pore-forming bactericidal mechanism without inducement of drug resistance.
Collapse
Affiliation(s)
- Xinyu Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Jing He
- Department of Anatomy and Neurobiology
- Tongji University School of Medicine
- Shanghai
- China
| | - Chuncai Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| |
Collapse
|
16
|
Jain R, Roy S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 2019; 9:38745-38759. [PMID: 35540202 PMCID: PMC9075944 DOI: 10.1039/c9ra07454f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
Exploring the potential of bifunctional collagen–laminin mimetic peptide based co-assembling gels for cell culture applications.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology
- Mohali
- India
| | - Sangita Roy
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|