1
|
Kinshuk S, Li L, Meckes B, Chan CTY. Sequence-Based Protein Design: A Review of Using Statistical Models to Characterize Coevolutionary Traits for Developing Hybrid Proteins as Genetic Sensors. Int J Mol Sci 2024; 25:8320. [PMID: 39125888 PMCID: PMC11312098 DOI: 10.3390/ijms25158320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Statistical analyses of homologous protein sequences can identify amino acid residue positions that co-evolve to generate family members with different properties. Based on the hypothesis that the coevolution of residue positions is necessary for maintaining protein structure, coevolutionary traits revealed by statistical models provide insight into residue-residue interactions that are important for understanding protein mechanisms at the molecular level. With the rapid expansion of genome sequencing databases that facilitate statistical analyses, this sequence-based approach has been used to study a broad range of protein families. An emerging application of this approach is to design hybrid transcriptional regulators as modular genetic sensors for novel wiring between input signals and genetic elements to control outputs. Among many allosterically regulated regulator families, the members contain structurally conserved and functionally independent protein domains, including a DNA-binding module (DBM) for interacting with a specific genetic element and a ligand-binding module (LBM) for sensing an input signal. By hybridizing a DBM and an LBM from two different family members, a hybrid regulator can be created with a new combination of signal-detection and DNA-recognition properties not present in natural systems. In this review, we present recent advances in the development of hybrid regulators and their applications in cellular engineering, especially focusing on the use of statistical analyses for characterizing DBM-LBM interactions and hybrid regulator design. Based on these studies, we then discuss the current limitations and potential directions for enhancing the impact of this sequence-based design approach.
Collapse
Affiliation(s)
- Sahaj Kinshuk
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; (S.K.); (L.L.); (B.M.)
| | - Lin Li
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; (S.K.); (L.L.); (B.M.)
| | - Brian Meckes
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; (S.K.); (L.L.); (B.M.)
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA; (S.K.); (L.L.); (B.M.)
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
2
|
Nartey C, Koo HJ, Laurendon C, Shaik HZ, O’maille P, Noel JP, Morcos F. Coevolutionary Information Captures Catalytic Functions and Reveals Divergent Roles of Terpene Synthase Interdomain Connections. Biochemistry 2024; 63:355-366. [PMID: 38206111 PMCID: PMC10851433 DOI: 10.1021/acs.biochem.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Inferring the historical and biophysical causes of diversity within protein families is a complex puzzle. A key to unraveling this problem is characterizing the rugged topography of sequence-function adaptive landscapes. Using biochemical data from a 29 = 512 combinatorial library of tobacco 5-epi-aristolochene synthase (TEAS) mutants engineered to make the native major product of Egyptian henbane premnaspirodiene synthase (HPS) and a complementary 512 mutant HPS library, we address the question of how product specificity is controlled. These data sets reveal that HPS is far more robust and resistant to mutations than TEAS, where most mutants are promiscuous. We also combine experimental data with a sequence Potts Hamiltonian model and direct coupling analysis to quantify mutant fitness. Our results demonstrate that the Hamiltonian captures variation in product outputs across both libraries, clusters native family members based on their substrate specificities, and exposes the divergent catalytic roles of couplings between the catalytic and noncatalytic domains of TEAS versus HPS. Specifically, we found that the role of the interdomain connectivities in specifying product output is more important in TEAS than connectivities within the catalytic domain. Despite being 75% identical, this property is not shared by HPS, where connectivities within the catalytic domain are more important for specificity. By solving the X-ray crystal structure of HPS, we assessed structural bases for their interdomain network differences. Last, we calculate the product profile Shannon entropies of the two libraries, which showcases that site-site connectivities also play divergent roles in catalytic accuracy.
Collapse
Affiliation(s)
- Charisse
M. Nartey
- Department
of Biological Sciences, The University of
Texas at Dallas, Richardson, Texas 75080, United States
| | - Hyun Jo Koo
- Howard
Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Caroline Laurendon
- John
Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Hana Z. Shaik
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| | - Paul O’maille
- John
Innes Centre, Institute of Food Research, Food & Health Programme, Norwich Research Park, Norwich NR4 7UA, U.K.
| | - Joseph P. Noel
- Howard
Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Faruck Morcos
- Department
of Biological Sciences, The University of
Texas at Dallas, Richardson, Texas 75080, United States
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
- Center for
Systems Biology, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Abstract
The bacterial flagellum is a large macromolecular assembly that acts as propeller, providing motility through the rotation of a long extracellular filament. It is composed of over 20 different proteins, many of them highly oligomeric. Accordingly, it has attracted a huge amount of interest amongst researchers and the wider public alike. Nonetheless, most of its molecular details had long remained elusive.This however has changed recently, with the emergence of cryo-EM to determine the structure of protein assemblies at near-atomic resolution. Within a few years, the atomic details of most of the flagellar components have been elucidated, revealing not only its overall architecture but also the molecular details of its rotation mechanism. However, many questions remained unaddressed, notably on the complexity of the assembly of such an intricate machinery.In this chapter, we review the current state of our understanding of the bacterial flagellum structure, focusing on the recent development from cryo-EM. We also highlight the various elements that still remain to be fully characterized. Finally, we summarize the existing model for flagellum assembly and discuss some of the outstanding questions that are still pending in our understanding of the diversity of assembly pathways.
Collapse
Affiliation(s)
- Natalie S Al-Otaibi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
4
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Thadani NN, Zhou Q, Reyes Gamas K, Butler S, Bueno C, Schafer NP, Morcos F, Wolynes PG, Suh J. Frustration and Direct-Coupling Analyses to Predict Formation and Function of Adeno-Associated Virus. Biophys J 2020; 120:489-503. [PMID: 33359833 DOI: 10.1016/j.bpj.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Adeno-associated virus (AAV) is a promising gene therapy vector because of its efficient gene delivery and relatively mild immunogenicity. To improve delivery target specificity, researchers use combinatorial and rational library design strategies to generate novel AAV capsid variants. These approaches frequently propose high proportions of nonforming or noninfective capsid protein sequences that reduce the effective depth of synthesized vector DNA libraries, thereby raising the discovery cost of novel vectors. We evaluated two computational techniques for their ability to estimate the impact of residue mutations on AAV capsid protein-protein interactions and thus predict changes in vector fitness, reasoning that these approaches might inform the design of functionally enriched AAV libraries and accelerate therapeutic candidate identification. The Frustratometer computes an energy function derived from the energy landscape theory of protein folding. Direct-coupling analysis (DCA) is a statistical framework that captures residue coevolution within proteins. We applied the Frustratometer to select candidate protein residues predicted to favor assembled or disassembled capsid states, then predicted mutation effects at these sites using the Frustratometer and DCA. Capsid mutants were experimentally assessed for changes in virus formation, stability, and transduction ability. The Frustratometer-based metric showed a counterintuitive correlation with viral stability, whereas a DCA-derived metric was highly correlated with virus transduction ability in the small population of residues studied. Our results suggest that coevolutionary models may be able to elucidate complex capsid residue-residue interaction networks essential for viral function, but further study is needed to understand the relationship between protein energy simulations and viral capsid metastability.
Collapse
Affiliation(s)
| | - Qin Zhou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas
| | | | - Susan Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Carlos Bueno
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, University of Texas at Dallas, Richardson, Texas; Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Biosciences, Rice University, Houston, Texas; Department of Physics, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas; Department of Biosciences, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas.
| |
Collapse
|
6
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
7
|
Carroll BL, Nishikino T, Guo W, Zhu S, Kojima S, Homma M, Liu J. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. eLife 2020; 9:61446. [PMID: 32893817 PMCID: PMC7505661 DOI: 10.7554/elife.61446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor switches rotational direction between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is known for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants in Vibrio alginolyticus. We determined the C-ring molecular architectures, providing novel insights into the mechanism of rotational switching. We report that the C-ring maintained 34-fold symmetry in both rotational senses, and the protein composition remained constant. The two structures show FliG conformational changes elicit a large conformational rearrangement of the rotor complex that coincides with rotational switching of the flagellum. FliM and FliN form a stable spiral-shaped base of the C-ring, likely stabilizing the C-ring during the conformational remodeling.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| |
Collapse
|
8
|
Khan S. The Architectural Dynamics of the Bacterial Flagellar Motor Switch. Biomolecules 2020; 10:E833. [PMID: 32486003 PMCID: PMC7355467 DOI: 10.3390/biom10060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes. Curr Opin Struct Biol 2019; 56:179-186. [PMID: 31029927 DOI: 10.1016/j.sbi.2019.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Abstract
Evolution imposes constraints at the interface of interacting biomolecules in order to preserve function or maintain fitness. This pressure may have a direct effect on the sequence composition of interacting biomolecules. As a result, statistical patterns of amino acid or nucleotide covariance that encode for physical and functional interactions are observed in sequences of extant organisms. In recent years, global pairwise models of amino acid and nucleotide coevolution from multiple sequence alignments have been developed and utilized to study molecular interactions in structural biology. In proteins, for which the energy landscape is funneled and minimally frustrated, a direct connection between the physical and sequence space landscapes can be established. Estimating coevolutionary information from sequences of interacting molecules has a broad impact in molecular biology. Applications include the accurate determination of 3D structures of molecular complexes, inference of protein interaction partners, models of protein-protein interaction specificity, the elucidation, and design of protein-nucleic acid recognition as well as the discovery of genome-wide epistatic effects. The current state of the art of coevolutionary analysis includes biomedical applications ranging from mutational landscapes and drug-design to vaccine development.
Collapse
|
10
|
Abstract
Thanks to the explosion of genomic sequencing, coevolutionary analysis of protein sequences has gained great and ever-increasing popularity in the last decade, and it is currently an important and well-established tool in structural bioinformatics and computational biology. This chapter concisely introduces the theoretical foundation and the practical aspects of coevolutionary analysis, as well as discusses the molecular modeling strategies to exploit its results in the study of protein structure, dynamics, and interactions. We present here a complete pipeline from sequence extraction to contact prediction through two examples, focusing on the predictions of inter-residue contacts in a single protein domain and on the analysis of a multi-domain protein that undergoes functional, large-scale conformational transitions.
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratory of Statistical Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Khan S, Guo TW, Misra S. A coevolution-guided model for the rotor of the bacterial flagellar motor. Sci Rep 2018; 8:11754. [PMID: 30082903 PMCID: PMC6079021 DOI: 10.1038/s41598-018-30293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 01/17/2023] Open
Abstract
The Salmonella typhimurium trans-membrane FliF MS ring templates assembly of the rotary bacterial flagellar motor, which also contains a cytoplasmic C-ring. A full-frame fusion of FliF with the rotor protein FliG assembles rings in non-motile expression hosts. 3D electron microscopy reconstructions of these FliFFliG rings show three high electron-density sub-volumes. 3D-classification revealed heterogeneity of the assigned cytoplasmic volume consistent with FliG lability. We used residue coevolution to construct homodimer building blocks for ring assembly, with X-ray crystal structures from other species and injectisome analogs. The coevolution signal validates folds and, importantly, indicates strong homodimer contacts for three ring building motifs (RBMs), initially identified in injectisome structures. It also indicates that the cofolded domains of the FliG N-terminal domain (FliG_N) with embedded α-helical FliF carboxy-terminal tail homo-oligomerize. The FliG middle and C-terminal domains (FliG_MC) have a weak signal for homo-dimerization but have coevolved to conserve their stacking contact. The homodimers and their ring models fit well into the 3D reconstruction. We hypothesize that a stable FliF periplasmic hub provides a platform for FliG ring self-assembly, but the FliG_MC ring has only limited stability without the C-ring. We also present a mechanical model for torque transmission in the FliFFliG ring.
Collapse
Affiliation(s)
- Shahid Khan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Tai Wei Guo
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Saurav Misra
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|