1
|
Balogh A, Kúdela M. Brighteness-dependent visual attractiveness of the human body for horse flies (Diptera: Tabanidae): a field experiment. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1368-1372. [PMID: 39182230 DOI: 10.1093/jme/tjae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
The landing patterns of blood-sucking females (Diptera: Tabanidae) are largely influenced by their visual perceptions. When attacking humans, the shape of different body parts and overall brightness of the body could be the factors determining the place of blood-sucking. The visual attractiveness of the human body for tabanids was investigated through a black and a white mannequin in the Danube floodplain, Slovakia. The mannequins were covered by glue once a week. On both of the mannequins, 332 horse flies were stuck. The trapped horse flies on the mannequins belong to the genera Tabanus Linnaeus, 1758, Hybomitra Enderlein, 1922, Chrysops Meigen, 1803, Haematopota Linnaeus, 1758 and Atylotus (Linnaeus, 1767). Based on the trapped tabanids, the black mannequin is 6.06 times more attractive than the white one. The most tabanid carcasses were found on the lower limbs (56.32%) and the least occurred on the head (2.1%), the difference in their occurrence between the lower limbs and head of both mannequins was significant (P < 0.001). A similar significant difference was observed on certain parts of both mannequins on the taxonomical level of the genera Tabanus, Hybomitra, and Atylotus, the carcasses of which aggregated mostly on the lower limbs, rather than on the upper limbs and head.
Collapse
Affiliation(s)
- Attila Balogh
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, Bratislava, Slovakia
| | - Matúš Kúdela
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, Bratislava, Slovakia
| |
Collapse
|
2
|
Horváth G, Dárdai B, Bíró M, Slíz-Balogh J, Száz D, Barta A, Egri Á. The all-day pollinator visits of sunflower inflorescences in Helianthus annuus plantations are independent of head orientation: Testing a widespread hypothesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1563-1576. [PMID: 39395022 DOI: 10.1111/tpj.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
Mature inflorescences of sunflowers (Helianthus annuus) orient constantly on average to the geographical east. According to one of the explanations of this phenomenon, the eastward orientation of sunflower inflorescences increases the number of attracted insect pollinators. We tested this hypothesis in three field experiments performed in flowering sunflower plantations. In experiments 1 and 2 we measured the number of insects trapped by the vertical walls of sticky sunflower models facing north, east, south, and west. In experiment 3 we counted the pollinators' landings on real sunflower inflorescences facing naturally east or turned artificially toward north, south, and west. We found that the all-day number of pollinators (predominantly bees) attracted to model and real sunflowers in H. annuus plantations is independent of the azimuth direction of sunflower heads, and after 10 h in the morning, the average number of pollinators counted every 20 min is practically constant in the rest of the day.
Collapse
Affiliation(s)
- Gábor Horváth
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Bence Dárdai
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Máté Bíró
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Judit Slíz-Balogh
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Dénes Száz
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - András Barta
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
| | - Ádám Egri
- Environmental Optics Laboratory, Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, H-1117, Hungary
- HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29-31, Budapest, H-1113, Hungary
| |
Collapse
|
3
|
Caro T, Fogg E, Stephens-Collins T, Santon M, How MJ. Why don't horseflies land on zebras? J Exp Biol 2023; 226:286760. [PMID: 36700395 PMCID: PMC10088525 DOI: 10.1242/jeb.244778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
Stripes deter horseflies (tabanids) from landing on zebras and, while several mechanisms have been proposed, these hypotheses have yet to be tested satisfactorily. Here, we investigated three possible visual mechanisms that could impede successful tabanid landings (aliasing, contrast and polarization) but additionally explored pattern element size employing video footage of horseflies around differently patterned coats placed on domestic horses. We found that horseflies are averse to landing on highly but not on lightly contrasting stripes printed on horse coats. We could find no evidence for horseflies being attracted to coats that better reflected polarized light. Horseflies were somewhat less attracted to regular than to irregular check patterns, but this effect was not large enough to support the hypothesis of disrupting optic flow through aliasing. More likely it is due to attraction towards larger dark patches present in the irregular check patterns, an idea bolstered by comparing landings to the size of dark patterns present on the different coats. Our working hypothesis for the principal anti-parasite features of zebra pelage are that their stripes are sharply outlined and thin because these features specifically eliminate the occurrence of large monochrome dark patches that are highly attractive to horseflies at close distances.
Collapse
Affiliation(s)
- Tim Caro
- School of Biological Sciences, 24 Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Eva Fogg
- School of Biological Sciences, 24 Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Matteo Santon
- School of Biological Sciences, 24 Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, 24 Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Takács P, Száz D, Vincze M, Slíz-Balogh J, Horváth G. Sunlit zebra stripes may confuse the thermal perception of blood vessels causing the visual unattractiveness of zebras to horseflies. Sci Rep 2022; 12:10871. [PMID: 35927437 PMCID: PMC9352684 DOI: 10.1038/s41598-022-14619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Multiple hypotheses have been proposed for possible functions of zebra stripes. The most thoroughly experimentally supported advantage of zebra stripes is their visual unattractiveness to horseflies (tabanids) and tsetse flies. We propose here a plausible hypothesis why biting horseflies avoid host animals with striped pelages: in sunshine the temperature gradients of the skin above the slightly warmer blood vessels are difficult to distinguish from the temperature gradients induced by the hairs at the borderlines of warmer black and cooler white stripes. To test this hypothesis, we performed a field experiment with tabanids walking on a host-imitating grey test target with vessel-mimicking thin black stripes which were slightly warmer than their grey surroundings in sunshine, while under shady conditions both areas had practically the same temperature as demonstrated by thermography. We found that horseflies spend more time walking on thin black stripes than surrounding grey areas as expected by chance, but only when the substrate is sunlit. This is because the black stripes are warmer than the surrounding grey areas in the sun, but not in the shade. This is consistent with the flies' well-documented attraction to warmer temperatures and provides indirect support for the proposed hypothesis. The frequent false vessel locations at the numerous black-white borderlines, the subsequent painful bitings with unsuccessful blood-sucking attempts and the host's fly-repellent reactions enhance considerably the chance that horseflies cannot evade host responses and are swatted by them. To eliminate this risk, a good evolutionary strategy was the avoidance of striped (and spotted) host animals.
Collapse
Affiliation(s)
- Péter Takács
- Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, 1117, Hungary
| | - Dénes Száz
- Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, 1117, Hungary
| | - Miklós Vincze
- MTA-ELTE Theoretical Physics Research Group, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, 1117, Hungary
| | - Judit Slíz-Balogh
- Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, 1117, Hungary
| | - Gábor Horváth
- Department of Biological Physics, ELTE Eötvös Loránd University, Pázmány sétány 1, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Vyshedskiy A. Language evolution is not limited to speech acquisition: a large study of language development in children with language deficits highlights the importance of the voluntary imagination component of language. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e86401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Did the boy bite the cat or was it the other way around? When processing a sentence with several objects, one has to establish ‘who did what to whom’. When a sentence cannot be interpreted by recalling an image from memory, we rely on the special type of voluntary constructive imagination called Prefrontal synthesis (PFS). PFS is defined as the ability to juxtapose mental visuospatial objects at will. We hypothesised that PFS has fundamental importance for language acquisition. To test this hypothesis, we designed a PFS-targeting intervention and administered it to 6,454 children with language deficiencies (age 2 to 12 years). The results from the three-year-long study demonstrated that children who engaged with the PFS intervention showed 2.2-fold improvement in combinatorial language comprehension compared to children with similar initial evaluations. These findings suggest that language can be improved by training the PFS and exposes the importance of the visuospatial component of language. This manuscript reflects on the experimental findings from the point of view of human language evolution. When used as a proxy for evolutionary language acquisition, the study results suggest a dichotomy of language evolution, with its speech component and its visuospatial component developing in parallel. The study highlights the radical idea that evolutionary acquisition of language was driven primarily by improvements of voluntary imagination rather than by improvements in the speech apparatus.
Collapse
|
6
|
How MJ, Gonzales D, Irwin A, Caro T. Zebra stripes, tabanid biting flies and the aperture effect. Proc Biol Sci 2020; 287:20201521. [PMID: 32811316 PMCID: PMC7482270 DOI: 10.1098/rspb.2020.1521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Of all hypotheses advanced for why zebras have stripes, avoidance of biting fly attack receives by far the most support, yet the mechanisms by which stripes thwart landings are not yet understood. A logical and popular hypothesis is that stripes interfere with optic flow patterns needed by flying insects to execute controlled landings. This could occur through disrupting the radial symmetry of optic flow via the aperture effect (i.e. generation of false motion cues by straight edges), or through spatio-temporal aliasing (i.e. misregistration of repeated features) of evenly spaced stripes. By recording and reconstructing tabanid fly behaviour around horses wearing differently patterned rugs, we could tease out these hypotheses using realistic target stimuli. We found that flies avoided landing on, flew faster near, and did not approach as close to striped and checked rugs compared to grey. Our observations that flies avoided checked patterns in a similar way to stripes refutes the hypothesis that stripes disrupt optic flow via the aperture effect, which critically demands parallel striped patterns. Our data narrow the menu of fly-equid visual interactions that form the basis for the extraordinary colouration of zebras.
Collapse
Affiliation(s)
- Martin J How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Dunia Gonzales
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alison Irwin
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tim Caro
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.,Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Whyte AF, Popescu FD, Carlson J. Tabanidae insect (horsefly and deerfly) allergy in humans: A review of the literature. Clin Exp Allergy 2020; 50:886-893. [PMID: 32512632 DOI: 10.1111/cea.13677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Allergy to insects of the family Tabanidae (order Diptera), commonly called horseflies or deerflies, is anecdotally common, although the published literature is limited to case reports and small case series. This review summarizes the available literature, in which there is enormous variability in clinical detail, identification of species or even genus, and means and thoroughness of assessment of sensitization. The clinical utility of in vivo and in vitro assays remains unclear. Investigation and management of patients reporting anaphylaxis to suspected bites must therefore be pragmatic, by considering other insects (eg Hymenoptera), provision of a written action plan and self-injectable adrenaline if appropriate, and advice on avoidance.
Collapse
Affiliation(s)
- Andrew F Whyte
- Department of Allergy and Immunology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Florin-Dan Popescu
- Department of Allergology, "Nicolae Malaxa" Clinical Hospital, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - John Carlson
- Section of Allergy and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
8
|
Kojima T, Oishi K, Matsubara Y, Uchiyama Y, Fukushima Y, Aoki N, Sato S, Masuda T, Ueda J, Hirooka H, Kino K. Cows painted with zebra-like striping can avoid biting fly attack. PLoS One 2019; 14:e0223447. [PMID: 31581218 PMCID: PMC6776349 DOI: 10.1371/journal.pone.0223447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
Experimental and comparative studies suggest that the striped coats of zebras can prevent biting fly attacks. Biting flies are serious pests of livestock that cause economic losses in animal production. We hypothesized that cows painted with black and white stripes on their body could avoid biting fly attacks and show fewer fly-repelling behaviors. Six Japanese Black cows were assigned to treatments using a 3 × 3 Latin-square design. The treatments were black-and-white painted stripes, black painted stripes, and no stripes (all-black body surface). Recorded fly-repelling behaviors were head throw, ear beat, leg stamp, skin twitch, and tail flick. Photo images of the right side of each cow were taken using a commercial digital camera after every observation and biting flies on the body and each leg were counted from the photo images. Here we show that the numbers of biting flies on Japanese Black cows painted with black-and-white stripes were significantly lower than those on non-painted cows and cows painted only with black stripes. The frequencies of fly-repelling behaviors in cows painted with black-and-white stripes were also lower than those in the non-painted and black-striped cows. These results thus suggest that painting black-and-white stripes on livestock such as cattle can prevent biting fly attacks and provide an alternative method of defending livestock against biting flies without using pesticides in animal production, thereby proposing a solution for the problem of pesticide resistance in the environment.
Collapse
Affiliation(s)
- Tomoki Kojima
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
- * E-mail:
| | - Kazato Oishi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasushi Matsubara
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Yuki Uchiyama
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Yoshihiko Fukushima
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Naoto Aoki
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Say Sato
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Tatsuaki Masuda
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| | - Junichi Ueda
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
- Aichi Veterinary Association, Nagoya, Aichi, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Katsutoshi Kino
- Animal Husbandry Division, Aichi Agricultural Research Center, Nagakute, Aichi, Japan
| |
Collapse
|
9
|
Vyshedskiy A. Language evolution to revolution: the leap from rich-vocabulary non-recursive communication system to recursive language 70,000 years ago was associated with acquisition of a novel component of imagination, called Prefrontal Synthesis, enabled by a mutation that slowed down the prefrontal cortex maturation simultaneously in two or more children – the Romulus and Remus hypothesis. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e38546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is an overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. On the other hand, artifacts signifying modern imagination, such as (1) composite figurative arts, (2) bone needles with an eye, (3) construction of dwellings, and (4) elaborate burials arose not earlier than 70,000 years ago. It remains unclear (1) why there was a long gap between acquisition of modern speech apparatus and modern imagination, (2) what triggered the acquisition of modern imagination 70,000 years ago, and (3) what role language might have played in this process. Our research into evolutionary origin of modern imagination has been driven by the observation of a temporal limit for the development of a particular component of imagination. Modern children not exposed to recursive language in early childhood never acquire the type of active constructive imagination called Prefrontal Synthesis (PFS). Unlike vocabulary and grammar acquisition, which can be learned throughout one’s lifetime, there is a strong critical period for the development of PFS and individuals not exposed to recursive language in early childhood can never acquire PFS as adults. Their language will always lack understanding of spatial prepositions and recursion that depend on the PFS ability. In a similar manner, early hominins would not have been able to learn recursive language as adults and, therefore, would not be able to teach recursive language to their children. Thus, the existence of a strong critical period for PFS acquisition creates an evolutionary barrier for behavioral modernity. An evolutionary mathematical model suggests that a synergistic confluence of three events (1) a genetic mutation that extended the critical period by slowing down the prefrontal cortex development simultaneously in two or more children, (2) invention of recursive elements of language, such as spatial prepositions, by these children and (3) their dialogic communications using these recursive elements, resulted in concurrent conversion of a non-recursive communication system of their parents to recursive language and acquisition of PFS around 70,000 years ago.
Collapse
|