1
|
Takekawa JY, Choi CY, Prosser DJ, Sullivan JD, Batbayar N, Xiao X. Perpetuation of Avian Influenza from Molt to Fall Migration in Wild Swan Geese ( Anser cygnoides): An Agent-Based Modeling Approach. Viruses 2025; 17:196. [PMID: 40006951 PMCID: PMC11861497 DOI: 10.3390/v17020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, where human and poultry densities are high year-round, compared with breeding grounds, where migratory waterfowl are more isolated. Few if any studies of avian influenza have focused on the molting stage where wild waterfowl congregate in a few selected wetlands and undergo the simultaneous molt of wing and tail feathers during a vulnerable flightless period. The molting stage may be one of the most important periods for the perpetuation of the disease in waterfowl, since during this stage, immunologically naïve young birds and adults freely intermix prior to the fall migration. Our study incorporated empirical data from virological field samplings and markings of Swan Geese (Anser cygnoides) on their breeding grounds in Mongolia in an integrated agent-based model (ABM) that included susceptible-exposed-infectious-recovered (SEIR) states. Our ABM results provided unique insights and indicated that individual movements between different molting wetlands and the transmission rate were the key predictors of HPAI perpetuation. While wetland extent was not a significant predictor of HPAI perpetuation, it had a large effect on the number of infections and associated death toll. Our results indicate that conserving undisturbed habitats for wild waterfowl during the molting stage of the breeding season could reduce the risk of HPAI transmission.
Collapse
Affiliation(s)
- John Y. Takekawa
- U.S. Geological Survey, Western Ecological Research Center, Vallejo, CA 94592, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| | - Chang-Yong Choi
- U.S. Geological Survey, Western Ecological Research Center, Vallejo, CA 94592, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Diann J. Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA; (D.J.P.); (J.D.S.)
| | - Jeffery D. Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA; (D.J.P.); (J.D.S.)
| | | | - Xiangming Xiao
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
2
|
Liu J, Su M, Chen X, Li Z, Fang Z, Yi L. Lipid-mediated biosynthetic labeling strategy for in vivo dynamic tracing of avian influenza virus infection. J Biomater Appl 2022; 36:1689-1699. [PMID: 34996310 DOI: 10.1177/08853282211063298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monitoring the infection behavior of avian influenza viruses is crucial for understanding viral pathogenesis and preventing its epidemics among people. A number of viral labeling methods have been utilized for tracking viral infection process, but most of them are laborious or decreasing viral activity. Herein we explored a lipid biosynthetic labeling strategy for dynamical tracking the infection of H5N1 pseudotype virus (H5N1p) in host. Biotinylated lipids (biotinyl Cap-PE) were successfully incorporated into viral envelope when it underwent budding process by taking advantage of host cell-derived lipid metabolism. Biotin-H5N1p virus was effectively in situ-labeled with streptavidin-modified near-infrared quantum dots (NIR SA-QDs) using streptavidin-biotin conjugation with well-preserved virus activities. Dual-labeled imaging obviously shows that H5N1p viruses are primarily taken up in host cells via clathrin-mediated endocytosis. In animal models, Virus-conjugated NIR QDs displayed extraordinary photoluminescence, superior stability, and tissue penetration in lung, allowing us to long-term monitor respiratory viral infection in a noninvasive manner. Importantly, the co-localization of viral hemagglutinin protein and QDs in infected lung further conformed the dynamic infection process of virus in vivo. Hence, this in situ QD-labeling strategy based on cell natural biosynthesis provides a brand-new and reliable tool for noninvasion visualizing viral infection in body in a real-time manner.
Collapse
Affiliation(s)
- Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Minhong Su
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Zhongli Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Zekui Fang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Li Yi
- Special Medical Service Center, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Delgado-Hernández B, Mugica L, Acosta M, Pérez F, Montano DDLN, Abreu Y, Ayala J, Percedo MI, Alfonso P. Knowledge, Attitudes, and Risk Perception Toward Avian Influenza Virus Exposure Among Cuban Hunters. Front Public Health 2021; 9:644786. [PMID: 34368040 PMCID: PMC8342762 DOI: 10.3389/fpubh.2021.644786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
A critical step for decreasing zoonotic disease threats is to have a good understanding of the associated risks. Hunters frequently handle potentially infected birds, so they are more at risk of being exposed to zoonotic avian pathogens, including avian influenza viruses (AIVs). The objective of the current study was to gain a better understanding of Cuban hunters' general hunting practices, focusing on their knowledge and risk perception on avian influenza. An anonymous and voluntary semi-structured questionnaire was designed and applied to 398 hunters. Multiple correspondence analyses found relationships with potential exposure of AIVs to people and domestic animals. The main associated risks factors identified were not taking the annual flu vaccine (60.1%) and not cleaning hunting knives (26.3%); Direct contact with water (32.1%), cleaning wild birds at home (33.2%); receiving assistance during bird cleaning (41.9%), keeping poultry at home (56.5%) and feeding domestic animals with wild bird leftovers (30.3%) were also identified as significant risk factors. The lack of use of some protective measures reported by hunters had no relationship with their awareness on avian influenza, which may imply a lack of such knowledge. The results evidenced that more effective risk communication strategies about the consequences of AIVs infecting human or other animals, and the importance of reducing such risks, are urgently needed.
Collapse
Affiliation(s)
- Beatriz Delgado-Hernández
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| | - Lourdes Mugica
- Bird Ecology Group, Biology Faculty, Havana University, Vedado, Cuba
| | - Martin Acosta
- Bird Ecology Group, Biology Faculty, Havana University, Vedado, Cuba
| | - Frank Pérez
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba.,Department of Veterinary Medicine, Faculty of Agricultural Sciences, University of Granma, Bayamo, Cuba
| | - Damarys de Las Nieves Montano
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| | - Yandy Abreu
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| | - Joel Ayala
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| | - María Irian Percedo
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| | - Pastor Alfonso
- Epidemiology Group, National Center for Animal and Plant Health (CENSA), World Organisation for Animal Health (OIE) Collaborating Center for the Reduction of the Risk of Disaster in Animal Health, San José de las Lajas, Cuba
| |
Collapse
|
4
|
Li X, Xu B, Shaman J. The Impact of Environmental Transmission and Epidemiological Features on the Geographical Translocation of Highly Pathogenic Avian Influenza Virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1890. [PMID: 31142047 PMCID: PMC6603588 DOI: 10.3390/ijerph16111890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
The factors affecting the transmission and geographic translocation of avian influenza viruses (AIVs) within wild migratory bird populations remain inadequately understood. In a previous study, we found that environmental transmission had little impact on AIV translocation in a model of a single migratory bird population. In order to simulate virus transmission and translocation more realistically, here we expanded this model system to include two migratory bird flocks. We simulated AIV transmission and translocation while varying four core properties: 1) Contact transmission rate; 2) infection recovery rate; 3) infection-induced mortality rate; and 4) migration recovery rate; and three environmental transmission properties: 1) Virion persistence; 2) exposure rate; and 3) re-scaled environmental infectiousness; as well as the time lag in the migration schedule of the two flocks. We found that environmental exposure rate had a significant impact on virus translocation in the two-flock model. Further, certain epidemiological features (i.e., low infection recovery rate, low mortality rate, and high migration transmission rate) in both flocks strongly affected the likelihood of virus translocation. Our results further identified the pathobiological features supporting AIV intercontinental dissemination risk.
Collapse
Affiliation(s)
- Xueying Li
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua, Beijing 100084, China.
| | - Bing Xu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua, Beijing 100084, China.
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|