1
|
Liu C, Liao Y, Jiao W, Zhang X, Wang N, Yu J, Liu YT, Ding B. High Toughness Combined with High Strength in Oxide Ceramic Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304401. [PMID: 37335805 DOI: 10.1002/adma.202304401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Traditional oxide ceramics are inherently brittle and highly sensitive to defects, making them vulnerable to failure under external stress. As such, endowing these materials with high strength and high toughness simultaneously is crucial to improve their performance in most safety-critical applications. Fibrillation of the ceramic materials and further refinement of the fiber diameter, as realized by electrospinning, are expected to achieve the transformation from brittleness to flexibility owing to the structural uniqueness. Currently, the synthesis of electrospun oxide ceramic nanofibers must rely on an organic polymer template to regulate the spinnability of the inorganic sol, whose thermal decomposition during ceramization will inevitably lead to pore defects, and seriously weaken the mechanical properties of the final nanofibers. Here, a self-templated electrospinning strategy is proposed for the formation of oxide ceramic nanofibers without adding any organic polymer template. An example is given to show that individual silica nanofibers have an ideally homogeneous, dense, and defect-free structure, with tensile strength as high as 1.41 GPa and toughness up to 34.29 MJ m-3 , both of which are far superior to the counterparts prepared by polymer-templated electrospinning. This work provides a new strategy to develop oxide ceramic materials that are strong and tough.
Collapse
Affiliation(s)
- Cheng Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yalong Liao
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Wenling Jiao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohua Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ni Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Qazzazie-Hauser A, Honnef K, Hanemann T. Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere. Polymers (Basel) 2021; 13:polym13152424. [PMID: 34372032 PMCID: PMC8347564 DOI: 10.3390/polym13152424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding material for ceramic coatings thanks to their extraordinary versatile processibility. A promising example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its crosslinking behavior by mixing it with three different photoinitiators, and curing it by two different UV-LED sources under both nitrogen and ambient atmosphere. The chemical conversion during polymerization and pyrolysis was monitored by FTIR spectroscopy. Pyrolysis was performed in a nitrogen atmosphere at 950 °C. The results demonstrate that polyorganosilazane can be cured by the energy-efficient UV-LED source at room temperature in nitrogen and ambient atmosphere. In nitrogen atmosphere, already common reactions for polysilazanes, including polyaddition of the vinyl group, dehydrogenation reactions, hydrosilylation, and transamination reaction, are responsible for crosslinking. Meanwhile, in ambient atmosphere, hydrolysis and polycondensation reactions occur next to the aforementioned reactions. In addition, the type of photoinitiator has an influence on the conversion of the reactive bonds and the chemical composition of the resulting ceramic. Furthermore, thermogravimetric analysis (TGA) was conducted in order to measure the ceramic yield of the cured samples as well as to study their decomposition. The ceramic yield was observed in the range of 72 to 78% depending on the composition and the curing atmosphere. The curing atmosphere significantly impacts the chemical composition of the resulting ceramics. Depending on the chosen atmosphere, either silicon carbonitride (SiCN) or a partially oxidized SiCN(O) can be produced.
Collapse
Affiliation(s)
- Afnan Qazzazie-Hauser
- Laboratory for Materials Processing, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany;
- Correspondence: (A.Q.-H.); (T.H.); Tel.: +49-761-203-7556 (A.Q.-H.)
| | - Kirsten Honnef
- Laboratory for Materials Processing, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany;
| | - Thomas Hanemann
- Laboratory for Materials Processing, Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany;
- Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (A.Q.-H.); (T.H.); Tel.: +49-761-203-7556 (A.Q.-H.)
| |
Collapse
|
3
|
Zhang Z, Calderon JE, Fahad S, Ju L, Antony DX, Yang Y, Kushima A, Zhai L. Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9794-9803. [PMID: 33596037 DOI: 10.1021/acsami.0c19681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-derived ceramics demonstrate great potential as lithium-ion battery anode materials with good cycling stability and large capacity. SiCNO ceramic nanoparticles are produced by the pyrolysis of polysilazane nanoparticles that are synthesized via an oil-in-oil emulsion crosslinking and used as anode materials. The SiCNO nanoparticles have an average particle size of around 9 nm and contain graphitic carbon and Si3N4 and SiO2 domains. Composite anodes are produced by mixing different concentrations of SiCNO nanoparticles, edge-functionalized graphene oxide, polyvinylidenefluoride, and carbon black Super P. The electrochemical behavior of the anode is investigated to evaluate the Li-ion storage performance of the composite anode and understand the mechanism of Li-ion storage. The lithiation of SiCNO is observed at ∼0.385 V versus Li/Li+. The anode has a large capacity of 705 mA h g-1 after 350 cycles at a current density of 0.1 A g-1 and shows an excellent cyclic stability with a capacity decay of 0.049 mA h g-1 (0.0097%) per cycle. SiCNO nanoparticles provide a large specific area that is beneficial to Li+ storage and cyclic stability. In situ transmission electron microscopy analysis demonstrates that the SiCNO nanoparticles exhibit extraordinary structural stability with 9.36% linear expansion in the lithiation process. The X-ray diffraction and X-ray photoelectron spectroscopy investigation of the working electrode before and after cycling suggests that Li+ was stored through two pathways in SiCNO lithiation: (a) Li-ion intercalation of graphitic carbon in free carbon domains and (b) lithiation of the SiO2 and Si3N4 domains through a two-stage process.
Collapse
Affiliation(s)
- Zeyang Zhang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Jean E Calderon
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Saisaban Fahad
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Licheng Ju
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Dennis-Xavier Antony
- Burnett's Honors College, University of Central Florida, Orlando, Florida 32816, United States
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Energy Conversion and Propulsion Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Akihiro Kushima
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
4
|
Ren Z, Gervais C, Singh G. Fabrication and characterization of silicon oxycarbide fibre-mats via electrospinning for high temperature applications. RSC Adv 2020; 10:38446-38455. [PMID: 35517540 PMCID: PMC9057258 DOI: 10.1039/d0ra04060f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022] Open
Abstract
Electrospinning is an emerging technique for synthesizing micron to submicron-sized polymer fibre supports for applications in energy storage, catalysis, filtration, drug delivery and so on. However, fabrication of electrospun ceramic fibre mats for use as a reinforcement phase in ceramic matrix composites or CMCs for aerospace applications remains largely unexplored. This is mainly due to stringent operating requirements that require a combination of properties such as low mass density, high strength, and ultrahigh temperature resistance. Herein we report fabrication of molecular precursor-derived silicon oxycarbide or SiOC fibre mats via electrospinning and pyrolysis of cyclic polysiloxanes-based precursors at significantly lower weight loadings of organic co-spin agent. Ceramic fibre mats, which were free of wrapping, were prepared by a one-step spinning (in air) and post heat-treatment for crosslinking and pyrolysis (in argon at 800 °C). The pyrolyzed fibre mats were revealed to be amorphous and a few microns in diameter. Four siloxane-based pre-ceramic polymers were used to study the influence of precursor molecular structure on the compositional and morphological differences of cross-linked and pyrolyzed products. Further thermal characterization suggested the potential of electrospun ceramic mats in high temperature applications. Electrospinning of ceramic mats for high temperature applications.![]()
Collapse
Affiliation(s)
- Zhongkan Ren
- Departement of Mechanical and Nuclear Engineering, Kansas State University Manhattan KS 66506 USA
| | - Christel Gervais
- Sorbonne Université, CNRS UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Gurpreet Singh
- Departement of Mechanical and Nuclear Engineering, Kansas State University Manhattan KS 66506 USA
| |
Collapse
|