1
|
Zhu YA, Li Q, Lu J, Chen Y, Wang J, Gai Z, Zhao W, Wei G, Yu Y, Ahlberg PE, Zhu M. The oldest complete jawed vertebrates from the early Silurian of China. Nature 2022; 609:954-958. [PMID: 36171378 DOI: 10.1038/s41586-022-05136-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.
Collapse
Affiliation(s)
- You-An Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jing Lu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Chen
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,Chongqing Institute of Geology and Mineral Resources, Chongqing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Zhikun Gai
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing, China
| | - Yilun Yu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Per E Ahlberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Andreev PS, Sansom IJ, Li Q, Zhao W, Wang J, Wang CC, Peng L, Jia L, Qiao T, Zhu M. The oldest gnathostome teeth. Nature 2022; 609:964-968. [PMID: 36171375 DOI: 10.1038/s41586-022-05166-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).
Collapse
Affiliation(s)
- Plamen S Andreev
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ivan J Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Qiang Li
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China.,Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjin Zhao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Wang
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Lijian Peng
- Research Center of Natural History and Culture, Qujing Normal University, Qujing, China
| | - Liantao Jia
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tuo Qiao
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Min Zhu
- Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Li Q, Zhu YA, Lu J, Chen Y, Wang J, Peng L, Wei G, Zhu M. A new Silurian fish close to the common ancestor of modern gnathostomes. Curr Biol 2021; 31:3613-3620.e2. [PMID: 34146483 DOI: 10.1016/j.cub.2021.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
The Silurian Period occupies a pivotal stage in the unfolding of key evolutionary events, including the rise of jawed vertebrates.1-4 However, the understanding of this early diversification is often hampered by the patchy nature of the Silurian fossil record,5 with the articulated specimens of jawed vertebrates only known in isolated localities, most notably Qujing, Yunnan, China.6-9 Here, we report a new Silurian maxillate placoderm, Bianchengichthys micros, from the Ludlow of Chongqing, with a near-complete dermatoskeleton preserved in articulation. Although geographically separated, the new taxon resembles the previously reported Qilinyu in possessing a unique combination of dermatoskeletal characters. However, the dermal bone of the mandible in Bianchengichthys unexpectedly differs from those in both Qilinyu and Entelognathus and displays a broad oral lamina carrying a line of tooth-like denticles, in addition to the marginal toothless flange. The external morphology of the pectoral fin is preserved and reveals an extensively scale-covered lobate part, flanked by a fringe of lepidotrichia-like aligned scales. The phylogenetic analysis reveals that Bianchengichthys is positioned immediately below Entelognathus plus modern gnathostomes. The discovery significantly widens the distribution of Silurian placoderm-grade gnathostomes in South China and provides a range of morphological disparity for the outgroup comparison to the earliest evolution of jaws, dentitions, and pectoral fins in modern gnathostomes. We also demonstrate that the previously reported Silurian placoderms from central Vietnam10 are maxillate placoderms close to Qilinyu, Silurolepis, and Bianchengichthys, corroborating the paleogeographic proximity between the Indochina and South China blocks during the Middle Paleozoic.11.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China; Qujing Normal University, Yunnan 655000, China
| | - You-An Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment, Chongqing 401120, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | | | - Lijian Peng
- Qujing Normal University, Yunnan 655000, China
| | - Guangbiao Wei
- Chongqing Institute of Geological Survey, Chongqing 401122, China
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Endocast and Bony Labyrinth of a Devonian "Placoderm" Challenges Stem Gnathostome Phylogeny. Curr Biol 2021; 31:1112-1118.e4. [PMID: 33508218 DOI: 10.1016/j.cub.2020.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Our understanding of the earliest evolution of jawed vertebrates depends on a credible phylogenetic framework for the jawed stem gnathostomes collectively known as "placoderms".1 However, their relationships, and whether placoderms represent a single radiation or a paraphyletic array, remain contentious.2-13 This uncertainty is compounded by an uneven understanding of anatomy across the group, particularly of the phylogenetically informative braincase and brain cavity-endocast. Based on new tomographic data, we here describe the endocast and bony labyrinth of Brindabellaspis stensioi from the Early Devonian of New South Wales.14 The taxon was commonly recovered as branching near the base of placoderms.5-9,11,12,15-17 Previous studies of Brindabellaspis emphasized its resemblances with fossil jawless fishes in the braincase anatomy14 and endocast proportions1,18 and its distinctive features were interpreted as autapomorphies, such as the elongated premedian region.19 Although our three-dimensional data confirmed the resemblance of its endocast to those of jawless vertebrates, we discovered that the inner ear and endolymphatic complex display a repertoire of previously unrecognized characters close to modern or crown-group jawed vertebrates, including a pronounced sinus superior and a vertical duct that connects the endolymphatic sac and the labyrinth cavity. Both parsimony and Bayesian analyses suggest that prevailing hypotheses of placoderm relationships are unstable, with newly revealed anatomy pointing to a radical revision of early gnathostome evolution. Our results call into question the appropriateness of arthrodire-like placoderms as models of primitive gnathostome anatomy and raise questions of homology relating to key cranial features.
Collapse
|