1
|
Zhu J, Jiang X, Luo X, Gao Y, Zhao R, Li J, Cai H, Dang X, Ye X, Bai R, Xie T. Discovery and bioassay of disubstituted β-elemene-NO donor conjugates: synergistic enhancement in the treatment of leukemia. Chin J Nat Med 2023; 21:916-926. [PMID: 38143105 DOI: 10.1016/s1875-5364(23)60404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 12/26/2023]
Abstract
Natural products are essential sources of antitumor drugs. One such molecule, β-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor β-elemene derivatives were designed, with β-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.
Collapse
Affiliation(s)
- Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangyang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Cao LY, Xu JY, Zhuo XT, Zhang W, Wei LJ, Dong JH, Bai RR, Wang X, Jiang YY, Wang YJ, Ye XY, Xie T, Huang ZH. 2,2'-((1R,3R,4S)-4-methyl-4-vinylcyclohexane-1,3-diyl) bis(prop-2-en-1-amine), a bisamino derivative of β-Elemene, inhibits glioblastoma growth through downregulation of YAP signaling. Am J Cancer Res 2022; 12:5484-5499. [PMID: 36628286 PMCID: PMC9827083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/20/2022] [Indexed: 01/12/2023] Open
Abstract
β-Elemene, a compound extracted from Chinese herb Curcuma wenyujin, has been demonstrated with antitumor effects in various cancers, including glioblastoma (GBM), a primary brain tumor with high morbidity and mortality. In this study, we reported a bisamino derivative of β-Elemene, 2, 2'-((1R, 3R, 4S)-4-methyl-4-vinylcyclohexane-1, 3-diyl) bis(prop-2-en-1-amine) (compound 1), displayed a better anti-GBM effect than β-Elemene with lower concentration. GBM cell lines (C6 and U87) were treated with compound 1 and subsequently analyzed by several assays. Compound 1 significantly inhibited the migration of C6 and U87 cells based on wound healing assay, transwell assay and inverted migration assay. Furthermore, colony formation assay, immunostaining and flow cytometry assays revealed that compound 1 significantly inhibited the proliferation of GBM cells. In addition, compound 1 induced the apoptosis of GBM cells. Mechanistically, we found Yes-associated protein (YAP) was down-regulated in compound 1-treated GBM cells, and the overexpression of YAP partially rescued the anti-GBM effects of compound 1. Finally, compound 1 suppresses the GBM growth in xenograft model through inactivation YAP signaling. Taken together, these results reveal that a novel derivative of β-Elemene, compound 1, exhibits more potent anti-GBM activity than β-Elemene through inactivating YAP signaling pathway, which will provide novel strategies for the treatment of GBM.
Collapse
Affiliation(s)
- Li-Ying Cao
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Jia-Yun Xu
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xiao-Tao Zhuo
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Li-Jia Wei
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Jian-Hong Dong
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Ren-Ren Bai
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xin Wang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Yuan-Yuan Jiang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Yong-Jie Wang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| |
Collapse
|
3
|
Akkarasereenon K, Batsomboon P, Ruchirawat S, Ploypradith P. Functionalized Chromans from ortho-Quinone Methides and Arylallenes. J Org Chem 2022; 87:15863-15887. [PMID: 36373006 DOI: 10.1021/acs.joc.2c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ortho-Quinone methides (o-QMs) underwent formal [4 + 2]-cycloaddition reactions with arylallenes regioselectively at the styrenyl olefin to furnish the corresponding 3-methylene-2-arylchromans in moderate to good yields (up to 88%). When R ≠ H, the reactions also proceeded with moderate stereoselectivity (up to 5:1) which was governed by the nature of the R group. The 3-methylene-2-arylchromans could serve as common intermediates for further functionalization including epoxidation, oxidative cleavage/Baeyer-Villiger oxidation, Riley oxidation, acid-catalyzed rearrangement, and Pd-catalyzed cross-coupling reactions to furnish the corresponding derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Kornkamon Akkarasereenon
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
4
|
Gao Y, Mao ND, Che H, Xu L, Bai R, Wang LW, Ye XY, Xie T. Novel hydroxyl carboximates derived from β-elemene: design, synthesis and anti-tumour activities evaluation. J Enzyme Inhib Med Chem 2022; 37:2403-2416. [PMID: 36065895 PMCID: PMC9467605 DOI: 10.1080/14756366.2022.2117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A series of novel N-alkyl-N-hydroxyl carboximates derived from β-elemene were fortuitously discovered. Most of them showed more potent anti-proliferative activities than their lead compound β-elemene (1). Notably, compound 11i exhibited significant inhibitory effects on the proliferation of three lung cell lines (H1975, A549 and H460) and several other tumour cell lines (H1299, U87MG, MV4-11, and SU-DHL-2). Preliminary mechanistic studies revealed that compound 11i could significantly induce cell apoptosis. Further in vivo study in the H460 xenograft mouse model validated the anti-tumour activities of 11i with a greater tumour growth inhibition (TGI, 68.3%) than β-elemene and SAHA (50.1% and 55.9% respectively) at 60 mg/kg ip dosing, without obvious body weight loss and toxicity. Thus, such N-alkyl-N-hydroxyl carboximate class of compounds exemplified as 11i demonstrated potent anticancer activities both in vitro and in vivo, and should warrant further investigation for potential anticancer therapy.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Qi X, Jiang S, Hui Z, Gao Y, Ye Y, Lirussi F, Garrido C, Xu L, He X, Bai R, Ye XY, Xie T. Design, synthesis and antitumor efficacy evaluation of a series of novel β-elemene-based macrocycles. Bioorg Med Chem 2022; 74:117049. [DOI: 10.1016/j.bmc.2022.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
|
6
|
Mikhalyonok SG, Savelyev AI, Kuz’menok NM, Bezborodov VS. Chemo- and regioselective oxidation of substituted 2,3,4,9-tetrahydro-1H-carbazoles. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
7
|
Ye Y, Qi X, Xu B, Lin Y, Xiang H, Zou L, Ye XY, Xie T. Nickel-catalyzed cross-electrophile allylation of vinyl bromides and the modification of anti-tumour natural medicine β-elemene. Chem Sci 2022; 13:6959-6966. [PMID: 35774167 PMCID: PMC9200125 DOI: 10.1039/d2sc02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule β-elemene. Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant.![]()
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Liang Zou
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
8
|
Bai R, Zhu J, Bai Z, Mao Q, Zhang Y, Hui Z, Luo X, Ye XY, Xie T. Second generation β-elemene nitric oxide derivatives with reasonable linkers: potential hybrids against malignant brain glioma. J Enzyme Inhib Med Chem 2022; 37:379-385. [PMID: 35012394 PMCID: PMC8757613 DOI: 10.1080/14756366.2021.2016734] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Elemene is a second-line broad-spectrum anti-tumour drug that has been used in China for more than two decades. However, its main anti-tumour ingredient, β-elemene, has disadvantages, including excessive lipophilicity and relatively weak anti-tumour efficacy. To improve the anti-tumour activity of β-elemene, based on its minor molecular weight character, we introduced furoxan nitric oxide (NO) donors into the β-elemene structure and designed six series of new generation β-elemene NO donor hybrids. The synthesised compounds could effectively release NO in vitro, displayed significant anti-proliferative effects on U87MG, NCI-H520, and SW620 cell lines. In the orthotopic glioma model, compound Id significantly and continuously suppressed the growth of gliomas in nude mice, and the brain glioma of the treatment group was markedly inhibited (>90%). In short, the structural fusion design of NO donor and β-elemene is a feasible strategy to improve the in vivo anti-tumour activity of β-elemene.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ziqiang Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qing Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Thurow S, Abenante L, Anghinoni JM, Lenardão EJ. SELENIUM AS A VERSATILE REAGENT IN ORGANIC SYNTHESIS: MORE THAN ALLYLIC OXIDATION. Curr Org Synth 2021; 19:331-365. [PMID: 34036912 DOI: 10.2174/1570179418666210525152001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 11/22/2022]
Abstract
For many years since its discovery, Selenium has played the role of a bad boy who became a hero in organic transformations. Selenium dioxide, for instance, is one of the most remembered reagents in allylic oxidations, having been applied in the synthesis of several naturally occurring products. The main goal of this review is to show the recent advances in the use of classical and new selenium reagents in organic synthesis. As demonstrated through around 60 references discussed in this study, selenium can go even forward as a versatile reagent. We bring a collection of selenium reagents and their transformations that are still hidden from most synthetic organic chemists.
Collapse
Affiliation(s)
- Samuel Thurow
- Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato, 270, 13083-862, Campinas, SP, Brazil
| | - Laura Abenante
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - João Marcos Anghinoni
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
10
|
Anti-Tumor Drug Discovery Based on Natural Product β-Elemene: Anti-Tumor Mechanisms and Structural Modification. Molecules 2021; 26:molecules26061499. [PMID: 33801899 PMCID: PMC7998186 DOI: 10.3390/molecules26061499] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Natural products are important sources for drug discovery, especially anti-tumor drugs. β-Elemene, the prominent active ingredient extract from the rhizome of Curcuma wenyujin, is a representative natural product with broad anti-tumor activities. The main molecular mechanism of β-elemene is to inhibit tumor growth and proliferation, induce apoptosis, inhibit tumor cell invasion and metastasis, enhance the sensitivity of chemoradiotherapy, regulate the immune system, and reverse multidrug resistance (MDR). Elemene oral emulsion and elemene injection were approved by the China Food and Drug Administration (CFDA) for the treatment of various cancers and bone metastasis in 1994. However, the lipophilicity and low bioavailability limit its application. To discover better β-elemene-derived anti-tumor drugs with satisfying drug-like properties, researchers have modified its structure under the premise of not damaging the basic scaffold structure. In this review, we comprehensively discuss and summarize the potential anti-tumor mechanisms and the progress of structural modifications of β-elemene.
Collapse
|