1
|
Peng W, Wang X, Wang W, Wang Y, Huang J, Zhou R, Bo R, Liu M, Yin S, Li J. Comparison, optimization and antioxidant activity of ultrasound-assisted natural deep eutectic solvents extraction and traditional method: A greener route for extraction of flavonoid from Moringa oleifera Lam. leaves. ULTRASONICS SONOCHEMISTRY 2024; 109:107003. [PMID: 39079439 PMCID: PMC11339064 DOI: 10.1016/j.ultsonch.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
To develop an environmentally sustainable and efficient extraction method for flavonoids from Moringa oleifera Lam. (M. oleifera) leaves, natural deep eutectic solvents (NADES) with ultrasound-assisted extraction was utilized in this study. After optimization of extraction parameters of NADES, including ultrasonic power, ultrasonic time, and liquid-solid ratio, the extraction yield of ultrasound-assisted NADES (UAN) composed of betaine and urea (Bet-Urea) reached 54.69 ± 0.19 mg RE/g DW, which made a 1.7-fold increase compared to traditional ultrasound-assisted traditional solvent (UATS). UPLC-Q Exactive/MS analysis revealed that M. oleifera leaves flavonoids (MOLF) was mainly composed of Quercetin 3-β-D-glucoside, Rutin, Kaempferol-3-O-glucoside, Vitexin and Quercetin. Furthermore, the COSMO-RS model was employed to verify the optimal compatibility of solubility and activity coefficient between Bet-Urea and the five primary flavonoids in MOLF. In vitro antioxidant assays verified that MOLF extracted by UAN exhibited superior antioxidant activity compared to MOLF extracted by UATS. Overall, the devised process not only augmented the extraction yield of MOLF but also effectively preserved the bioactive compounds, thus promoting the utilization of green extraction solvents in the food industry.
Collapse
Affiliation(s)
- Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Weimei Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yaya Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Junjie Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruigang Zhou
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shaojie Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Simamora A, Timotius KH, Setiawan H, Saputri FA, Putri CR, Aryani D, Ningrum RA, Mun'im A. Ultrasonic-Assisted Extraction of Xanthorrhizol from Curcuma xanthorrhiza Roxb. Rhizomes by Natural Deep Eutectic Solvents: Optimization, Antioxidant Activity, and Toxicity Profiles. Molecules 2024; 29:2093. [PMID: 38731583 PMCID: PMC11085723 DOI: 10.3390/molecules29092093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.
Collapse
Affiliation(s)
- Adelina Simamora
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Kris Herawan Timotius
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Heri Setiawan
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | | | | | - Dewi Aryani
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Ratih Asmana Ningrum
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, West Java, Indonesia
| | - Abdul Mun'im
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| |
Collapse
|
3
|
Oktaviyanti ND, Setiawan F, Kartini K, Azminah A, Avanti C, Hayun H, Mun'im A. Development of a Simple and Rapid HPLC-UV Method for Ultrasound-assisted Deep Eutectic Solvent Extraction optimization of Ferulic Acid and Antioxidant Activity from Ixora javanica Flowers. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
On the behavior of quercetin + organic solvent solutions and their role for C60 fullerene solubilization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Dong JN, Wu GD, Dong ZQ, Yang D, Bo YK, An M, Zhao LS. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Adv 2021; 11:37649-37660. [PMID: 35496443 PMCID: PMC9043790 DOI: 10.1039/d1ra06338c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
An efficient and environmentally friendly ultrasound-assisted (UAE) natural deep eutectic solvent (NADES) extraction method was applied for the extraction of five bioactive compounds (liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin) from compound liquorice tablets (CPLTs), and the antioxidant activities of these compounds were evaluated. In this study, eighteen different NADES systems based on either two or three components were tested and a 1,4-butanediol–levulinic acid system (1 : 3 molar ratio) was selected as a topgallant solvent for maximizing analyte extraction yields. Various extraction parameters, such as water content, liquid/solid ratio, extraction time and temperature, were systematically optimized by single-factor and response surface methodology (RSM) experiments. The results indicated that the optimum extraction conditions for the analytes featured a water content of 17%, a liquid/solid ratio of 42 mL g−1 and an extraction time of 30 min. The extracted amounts of liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin reached 5.60, 3.17, 1.27, 74.62 and 1.34 mg g−1, respectively, under optimized conditions, which were much higher than those extracted using conventional organic solvents. In addition, antioxidant tests revealed that the NADES extracts showed higher DPPH and hydroxyl radical-scavenging capacity than the conventional solvent extracts used for comparison. This study provides a suitable approach for efficiently extracting the bioactive compounds of CPLTs. Meanwhile, NADESs can be extended to other natural products as green extraction media. A 1,4-butanediol–levulinic acid system was selected as a topgallant solvent and extraction parameters were optimized. NADES extracts exhibited higher extraction efficiency and in vitro antioxidant activities than conventional solvent extracts.![]()
Collapse
Affiliation(s)
- Jia-Ni Dong
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Guo-Dong Wu
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Zhi-Qiang Dong
- The First Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia 014010 China
| | - Dan Yang
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Yu-Kun Bo
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Ming An
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Long-Shan Zhao
- Shenyang Pharmaceutical University Shenyang Liaoning Province 110016 China +86 24 43520571
| |
Collapse
|
6
|
Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021; 26:molecules26175377. [PMID: 34500810 PMCID: PMC8434187 DOI: 10.3390/molecules26175377] [Citation(s) in RCA: 442] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| | - Diana C. G. A. Pinto
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| |
Collapse
|