1
|
Kubo K, Kobayashi Y. Cursorial ecomorphology and temporal patterns in theropod dinosaur evolution during the mid-Cretaceous. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241178. [PMID: 39816741 PMCID: PMC11732414 DOI: 10.1098/rsos.241178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
Coelurosauria, including modern birds, represents a successful group of theropod dinosaurs that established a high taxonomic diversity and significant morphological modifications. In the evolutionary history of this group, a specialized foot morphology, the arctometatarsus, evolved independently in several lineages and has been considered an adaptation for cursoriality. While its functional significance has been extensively studied, the temporal pattern of this parallel evolution, as well as its origin and influencing factors, remains largely unresolved. Here, we show the temporal evolution of cursorial traits, including the arctometatarsus and hind limb proportions. Our study reveals that the proportional elongation of distal hind limb segments preceded the evolution of the arctometatarsus in ornithomimosaurs and oviraptorosaurs. In contrast, in tyrannosauroids, alvarezsaurs and troodontids, the proportional elongation of the tibia and metatarsals occurred in parallel with the acquisition of the arctometatarsus. The evolutionary history of the arctometatarsus further highlights the presence of a phylogenetic constraint outside Coelurosauria, as this foot specialization is restricted to members of this group. Finally, our date estimation, based on compiled evolutionary patterns, demonstrates that these cursorial traits emerged during the mid-Cretaceous (93-120 Ma), suggesting selection on theropod locomotor performance throughout this interval.
Collapse
Affiliation(s)
- Kohta Kubo
- Department of Natural History Sciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Yoshitsugu Kobayashi
- Hokkaido University Museum, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan
| |
Collapse
|
2
|
Meade LE, Pittman M, Balanoff A, Lautenschlager S. Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria. Commun Biol 2024; 7:436. [PMID: 38600295 PMCID: PMC11006937 DOI: 10.1038/s42003-024-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amy Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Wu Q, O’Connor JK, Wang S, Zhou Z. Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint. PeerJ 2024; 12:e16960. [PMID: 38436017 PMCID: PMC10909347 DOI: 10.7717/peerj.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Important transformations of the pectoral girdle are related to the appearance of flight capabilities in the Dinosauria. Previous studies on this topic focused mainly on paravians yet recent data suggests flight evolved in dinosaurs several times, including at least once among non-avialan paravians. Thus, to fully explore the evolution of flight-related avian shoulder girdle characteristics, it is necessary to compare morphology more broadly. Here, we present information from pennaraptoran specimens preserving pectoral girdle elements, including all purportedly volant taxa, and extensively compare aspects of the shoulder joint. The results show that many pectoral girdle modifications appear during the evolution from basal pennaraptorans to paravians, including changes in the orientation of the coracoid body and the location of the articulation between the furcula and scapula. These modifications suggest a change in forelimb range of motion preceded the origin of flight in paravians. During the evolution of early avialans, additional flight adaptive transformations occur, such as the separation of the scapula and coracoid and reduction of the articular surface between these two bones, reduction in the angle between these two elements, and elongation of the coracoid. The diversity of coracoid morphologies and types of articulations joining the scapula-coracoid suggest that each early avialan lineage evolved these features in parallel as they independently evolved more refined flight capabilities. In early ornithothoracines, the orientation of the glenoid fossa and location of the acrocoracoid approaches the condition in extant birds, suggesting a greater range of motion in the flight stroke, which may represent the acquisition of improved powered flight capabilities, such as ground take-off. The formation of a new articulation between the coracoid and furcula in the Ornithuromorpha is the last step in the formation of an osseous triosseal canal, which may indicate the complete acquisition of the modern flight apparatus. These morphological transitions equipped birds with a greater range of motion, increased and more efficient muscular output and while at the same time transmitting the increased pressure being generated by ever more powerful flapping movements in such a way as to protect the organs. The driving factors and functional adaptations of many of these transitional morphologies are as yet unclear although ontogenetic transitions in forelimb function observed in extant birds provide an excellent framework through which we can explore the behavior of Mesozoic pennaraptorans.
Collapse
Affiliation(s)
- Qian Wu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Jingmai K. O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States of America
| | - Shiying Wang
- College of Paleontology, Shenyang Normal University, Shenyang, China
| | - Zhonghe Zhou
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Atkins-Weltman KL, Simon DJ, Woodward HN, Funston GF, Snively E. A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America. PLoS One 2024; 19:e0294901. [PMID: 38266012 PMCID: PMC10807829 DOI: 10.1371/journal.pone.0294901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/08/2023] [Indexed: 01/26/2024] Open
Abstract
Caenagnathidae is a clade of derived, Late Cretaceous oviraptorosaurian theropods from Asia and North America. Because their remains are rare and often fragmentary, caenagnathid diversity is poorly understood. Anzu wyliei is the only caenagnathid species currently described from the late Maastrichtian Hell Creek Formation of the USA and is also among the largest and most completely preserved North American caenagnathids. Smaller, less complete caenagnathid material has long been known from the Hell Creek Formation, but it is unclear whether these are juvenile representatives of Anzu or if they represent distinct, unnamed taxa. Here, we describe a relatively small caenagnathid hindlimb from the Hell Creek Formation, and conduct osteohistological analysis to assess its maturity. Histological data and morphological differences from Anzu wyliei and other caenagnathids allow us to conclude that this specimen represents a new species of caenagnathid from the Hell Creek Formation, with a smaller adult body size than Anzu. This new taxon is also distinct from other small caenagnathid material previously described from the area, potentially indicating the coexistence of three distinct caenagnathid species in the Hell Creek Formation. These results show that caenagnathid diversity in the Hell Creek ecosystem has been underestimated.
Collapse
Affiliation(s)
| | - D. Jade Simon
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Eric Snively
- Oklahoma State University, Tahlequah, OK, United States of America
| |
Collapse
|
5
|
Kubo K, Kobayashi Y, Chinzorig T, Tsogtbaatar K. A new alvarezsaurid dinosaur (Theropoda, Alvarezsauria) from the Upper Cretaceous Baruungoyot Formation of Mongolia provides insights for bird-like sleeping behavior in non-avian dinosaurs. PLoS One 2023; 18:e0293801. [PMID: 37967055 PMCID: PMC10651048 DOI: 10.1371/journal.pone.0293801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
Alvarezsauria is a group of early-branching maniraptoran theropods that are distributed globally from the Late Jurassic to the latest Cretaceous. Despite recent increases in the fossil record of this group, the scarcity of complete specimens still restricts interpreting their detailed anatomy, ecology, and evolution. Here, we report a new taxon of derived alvarezsaur, Jaculinykus yaruui gen. et sp. nov., from the Late Cretaceous of Mongolia, which represents a nearly complete and articulated skeleton. Our phylogenetic analysis reveals that Jaculinykus belongs to the sub-clade of Alvarezsauridae, Parvicursorinae, and forms a mononphyletic group with Mononykus and Shuvuuia. Its well-preserved manus has only two fingers, composed of a hypertrophied digit I and greatly reduced digit II, which implies an intermediate condition between the tridactyl manus of Shuvuuia and monodactyl manus of Linhenykus. This highlights a previously unrecognized variation in specialization of alvarezsaurid manus. Notably, the preserved posture of the specimen exhibits a stereotypical avian-like sleeping position seen in the troodontids Mei and Sinornithoides. Evidence of this behavior in the alvarezsaur Jaculinykus suggests that stereotypically avian sleeping postures are a maniraptoran synapomorphy, providing more evidence of bird-like traits being distributed broadly among avian ancestors.
Collapse
Affiliation(s)
- Kohta Kubo
- Department of Natural History and Planetary Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | | | - Tsogtbaatar Chinzorig
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | | |
Collapse
|
6
|
Tsogtbaatar C, Cullen T, Phillips G, Rolke R, Zanno LE. Large-bodied ornithomimosaurs inhabited Appalachia during the Late Cretaceous of North America. PLoS One 2022; 17:e0266648. [PMID: 36260601 PMCID: PMC9581415 DOI: 10.1371/journal.pone.0266648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Reconstructing the evolution, diversity, and paleobiogeography of North America’s Late Cretaceous dinosaur assemblages require spatiotemporally contiguous data; however, there remains a spatial and temporal disparity in dinosaur data on the continent. The rarity of vertebrate-bearing sedimentary deposits representing Turonian–Santonian ecosystems, and the relatively sparse record of dinosaurs from the eastern portion of the continent, present persistent challenges for studies of North American dinosaur evolution. Here we describe an assemblage of ornithomimosaurian materials from the Santonian Eutaw Formation of Mississippi. Morphological data coupled with osteohistological growth markers suggest the presence of two taxa of different body sizes, including one of the largest ornithomimosaurians known worldwide. The regression predicts a femoral circumference and a body mass of the Eutaw individuals similar to or greater than that of large-bodied ornithomimosaurs, Beishanlong grandis, and Gallimimus bullatus. The paleoosteohistology of MMNS VP-6332 demonstrates that the individual was at least ten years of age (similar to B. grandis [~375 kg, 13–14 years old at death]). Additional pedal elements share some intriguing features with ornithomimosaurs, yet suggest a larger-body size closer to Deinocheirus mirificus. The presence of a large-bodied ornithomimosaur in this region during this time is consistent with the relatively recent discoveries of early-diverging, large-bodied ornithomimosaurs from mid-Cretaceous strata of Laurasia (Arkansaurus fridayi and B. grandis). The smaller Eutaw taxon is represented by a tibia preserving seven growth cycles, with osteohistological indicators of decreasing growth, yet belongs to an individual approaching somatic maturity, suggesting the co-existence of medium- and large-bodied ornithomimosaur taxa during the Late Cretaceous Santonian of North America. The Eutaw ornithomimosaur materials provide key information on the diversity and distribution of North American ornithomimosaurs and Appalachian dinosaurs and fit with broader evidence of multiple cohabiting species of ornithomimosaurian dinosaurs in Late Cretaceous ecosystems of Laurasia.
Collapse
Affiliation(s)
- Chinzorig Tsogtbaatar
- Paleontology Research Lab, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
- * E-mail:
| | | | - George Phillips
- Conservation & Biodiversity Section, Mississippi Museum of Natural Science, Jackson, Mississippi, United States of America
| | - Richard Rolke
- Dow Chemical Company, Baton Rouge, Louisiana, United States of America
| | - Lindsay E. Zanno
- Paleontology Research Lab, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
7
|
Guinard G. THE FORELIMBS OF ALVAREZSAUROIDEA (DINOSAURIA: THEROPODA): INSIGHT FROM EVOLUTIONARY TERATOLOGY. J Morphol 2022; 283:1257-1272. [PMID: 35915891 DOI: 10.1002/jmor.21500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/09/2022]
Abstract
Alvarezsauroidea (Tetanurae) are non-avian theropod dinosaurs whose forelimb evolution is characterised by overdevelopment of digit I, at the expense of the other two digits, complemented by a drastic forelimb shortening in derived species (Parvicursorinae). These variations are recognised as evolutionary developmental anomalies. Evolutionary teratology hence leads to a double diagnosis with 1) macrodactyly of digit I and microdactyly of digits II and III, plus 2) anterior micromelia. The teratological macrodactyly/microdactyly coupling evolved first. Developmental mechanisms disturbing limb proportion are thought to be convergent with those of other Tetanurae (Tyrannosauridae, Carcharodontosauridae). As for the manual anomalies, both are specific to Alvarezsauroidea (macrodactyly/microdactyly) and inherited (digit loss/reduction). While considering the frame-shift theory, posterior digits develop before the most anterior one. There would therefore be a decrease in the area devoted to digits II (condensation 3) and III (condensation 4), in connection with the Shh signalling pathway, interacting with other molecular players such as the GLI 3 protein and the Hox system. Developmental independence of digit I (condensation 2) would contribute to generate a particular morphology. Macrodactyly would be linked to a variation in Hoxd-13, impacting Gli3 activity, increasing cell proliferation. The loss/reduction of digital ray/phalanges (digits II and III), would be associated to Shh activity, a mechanism inherited from the theropodan ancestry. The macrodactyly/macrodactyly coupling, and then anterior micromelia, fundamentally changed the forelimb mechanical function, compared to the 'classical' grasping structure of basal representatives and other theropods. The distal ossification of the macrodactylian digit has been identified as physiological, implying the use of the structure. However, the debate of a particular 'adaptive' use is pointless since the ecology of an organism is interactively complex, being both at the scale of the individual and dependent on circumstances. Other anatomical features also allow for compensation and a different predation (cursorial hindlimbs). This article is protected by copyright. All rights reserved.
Collapse
|
8
|
Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X. Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution. eLife 2022; 11:76086. [PMID: 35356889 PMCID: PMC9023055 DOI: 10.7554/elife.76086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The morphology of the pectoral girdle, the skeletal structure connecting the wing to the body, is a key determinant of flight capability, but in some respects is poorly known among stem birds. Here, the pectoral girdles of the Early Cretaceous birds Sapeornis and Piscivorenantiornis are reconstructed for the first time based on computed tomography and three-dimensional visualization, revealing key morphological details that are important for our understanding of early-flight evolution. Sapeornis exhibits a double articulation system (widely present in non-enantiornithine pennaraptoran theropods including crown birds), which involves, alongside the main scapula-coracoid joint, a small subsidiary joint, though variation exists with respect to the shape and size of the main and subsidiary articular contacts in non-enantiornithine pennaraptorans. This double articulation system contrasts with Piscivorenantiornis in which a spatially restricted scapula-coracoid joint is formed by a single set of opposing articular surfaces, a feature also present in other members of Enantiornithines, a major clade of stem birds known only from the Cretaceous. The unique single articulation system may reflect correspondingly unique flight behavior in enantiornithine birds, but this hypothesis requires further investigation from a functional perspective. Our renderings indicate that both Sapeornis and Piscivorenantiornis had a partially closed triosseal canal (a passage for muscle tendon that plays a key role in raising the wing), and our study suggests that this type of triosseal canal occurred in all known non-euornithine birds except Archaeopteryx, representing a transitional stage in flight apparatus evolution before the appearance of a fully closed bony triosseal canal as in modern birds. Our study reveals additional lineage-specific variations in pectoral girdle anatomy, as well as significant modification of the pectoral girdle along the line to crown birds. These modifications produced diverse pectoral girdle morphologies among Mesozoic birds, which allowed a commensurate range of capability levels and styles to emerge during the early evolution of flight.
Collapse
Affiliation(s)
- Shiying Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yubo Ma
- University of Alberta, Edmonton, Canada
| | - Qian Wu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Hu
- Paleontological Museum of Liaoning, Shenyang Normal University, Shenyang, China
| | | | - Xing Xu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Meade LE, Ma W. Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria. Sci Rep 2022; 12:3010. [PMID: 35194096 PMCID: PMC8863891 DOI: 10.1038/s41598-022-06910-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Oviraptorosaurians are an unusual and probably herbivorous group of theropod dinosaurs that evolved pneumatised crania with robust, toothless jaws, apparently adapted for producing a strong bite. Using 3D retrodeformed skull models of oviraptorid oviraptorosaurians Citipati, Khaan, and Conchoraptor, along with the earliest diverging oviraptorosaurian, Incisivosaurus, we digitally reconstruct jaw adductor musculature and estimate bite force to investigate cranial function in each species. We model muscle length change during jaw opening to constrain optimal and maximum gape angles. Results demonstrate oviraptorids were capable of much stronger bite forces than herbivorous theropods among Ornithomimosauria and Therizinosauria, relative to body mass and absolutely. Increased bite forces in oviraptorid oviraptorosaurians compared to the earliest diverging oviraptorosaurian result from expanded muscular space and different cranial geometry, not changes in muscular arrangement. Estimated optimal and maximum possible gapes are much smaller than published estimates for carnivorous theropods, being more similar to the herbivorous therizinosaurian theropod Erlikosaurus and modern birds. Restrictive gape and high bite force may represent adaptation towards exploiting tough vegetation, suggesting cranial function and dietary habits differed between oviraptorids and other herbivorous theropods. Differences in the relative strength of jaw adductor muscles between co-occurring oviraptorids may be a factor in niche partitioning, alongside body size.
Collapse
Affiliation(s)
| | - Waisum Ma
- University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Ossa-Fuentes L, Soto-Acuña S, Bona P, Sallaberry M, Vargas AO. Developmental evolution of the distal ankle in the dinosaur-bird transition. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:119-128. [PMID: 33382212 DOI: 10.1002/jez.b.23022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The adult ankle of early reptiles had five distal tarsal (dt) bones, but in Dinosauria, these were reduced to only two: dt3 and dt4, articulated to metatarsals (mt) mt3 and mt4. Birds have a single distal tarsal ossification center that fuses to the proximal metatarsals to form a new adult skeletal structure: the composite tarsometatarsus. This ossification center develops within a single large embryonic cartilage, but it is unclear if this cartilage results from fusion of earlier cartilages. We studied embryos in species from four different bird orders, an alligatorid, and an iguanid. In all embryos, cartilages dt2, dt3, and dt4 are formed. In the alligatorid and the iguanid, dt2 failed to ossify: only dt3 and dt4 develop into adult bones. In birds, dt2, dt3, and dt4 fuse to form the large distal tarsal cartilage; the ossification center then develops above mt3, in cartilage presumably derived from dt3. During the entire dinosaur-bird transition, a dt2 embryonic cartilage was always formed, as inferred from the embryology of extant birds and crocodilians. We propose that in the evolution of the avian ankle, fusion of cartilages dt3 and dt2 allowed ossification from dt3 to progress into dt2, which began to contribute bone medially, while fusion of dt3 to dt4 enabled the evolutionary loss of the dt4 ossification center. As a result, a single ossification center expands into a plate-like unit covering the proximal ends of the metatarsals, that is key to the development of an integrated tarsometatarsus.
Collapse
Affiliation(s)
- Luis Ossa-Fuentes
- Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Sergio Soto-Acuña
- Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Paula Bona
- CONICET, División Paleontología Vertebrados, Museo de La Plata, La Plata, Argentina
| | - Michel Sallaberry
- Laboratorio de Zoología de Vertebrados, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Alexander O Vargas
- Red Paleontológica U-Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| |
Collapse
|
11
|
Funston GF, Currie PJ, Tsogtbaatar C, Khishigjav T. A partial oviraptorosaur skeleton suggests low caenagnathid diversity in the Late Cretaceous Nemegt Formation of Mongolia. PLoS One 2021; 16:e0254564. [PMID: 34252154 PMCID: PMC8274908 DOI: 10.1371/journal.pone.0254564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The Nemegt Formation of the Gobi Desert of Mongolia has produced one of the most abundant and diverse oviraptorosaur records globally. However, the caenagnathid component of this fauna remains poorly known. Two caenagnathid taxa are currently recognized from the Nemegt Formation: Elmisaurus rarus and Nomingia gobiensis. Because these taxa are known from mostly non-overlapping material, there are concerns that they could represent the same animal. A partial, weathered caenagnathid skeleton discovered adjacent to the holotype quarry of Nomingia gobiensis is referable to Elmisaurus rarus, revealing more of the morphology of the cranium, mandible, pectoral girdle, and pubis. Despite metatarsals clearly exhibiting autapomorphies of Elmisaurus rarus, overlapping elements are identical to those of Nomingia gobiensis, and add to a growing body of evidence that these taxa represent a single morphotype. In the absence of any positive evidence for two caenagnathid taxa in the Nemegt Formation, Nomingia gobiensis is best regarded as a junior synonym of Elmisaurus rarus. Low caenagnathid diversity in the Nemegt Formation may reflect broader coexistence patterns with other oviraptorosaur families, particularly oviraptorids. In contrast to North America, competition with the exceptionally diverse oviraptorids may have restricted caenagnathids to marginal roles in Late Cretaceous Asian ecosystems.
Collapse
Affiliation(s)
- Gregory F. Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J. Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chinzorig Tsogtbaatar
- NC Museum of Natural Sciences, Department of Biological Sciences, NC State University, Raleigh, NC, United States of America
| | | |
Collapse
|