1
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
2
|
Blombach F, Werner F. Chromatin and gene regulation in archaea. Mol Microbiol 2024. [PMID: 39096085 DOI: 10.1111/mmi.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
The chromatinisation of DNA by nucleoid-associated proteins (NAPs) in archaea 'formats' the genome structure in profound ways, revealing both striking differences and analogies to eukaryotic chromatin. However, the extent to which archaeal NAPs actively regulate gene expression remains poorly understood. The dawn of quantitative chromatin mapping techniques and first NAP-specific occupancy profiles in different archaea promise a more accurate view. A picture emerges where in diverse archaea with very different NAP repertoires chromatin maintains access to regulatory motifs including the gene promoter independently of transcription activity. Our re-analysis of genome-wide occupancy data of the crenarchaeal NAP Cren7 shows that these chromatin-free regions are flanked by increased Cren7 binding across the transcription start site. While bacterial NAPs often form heterochromatin-like regions across islands with xenogeneic genes that are transcriptionally silenced, there is little evidence for similar structures in archaea and data from Haloferax show that the promoters of xenogeneic genes remain accessible. Local changes in chromatinisation causing wide-ranging effects on transcription restricted to one chromosomal interaction domain (CID) in Saccharolobus islandicus hint at a higher-order level of organisation between chromatin and transcription. The emerging challenge is to integrate results obtained at microscale and macroscale, reconciling molecular structure and function with dynamic genome-wide chromatin landscapes.
Collapse
Affiliation(s)
- Fabian Blombach
- Division of Biosciences, RNAP Laboratory, Institute of Structural and Molecular Biology (ISMB), University College London, London, UK
| | - Finn Werner
- Division of Biosciences, RNAP Laboratory, Institute of Structural and Molecular Biology (ISMB), University College London, London, UK
| |
Collapse
|
3
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Hocher A, Laursen SP, Radford P, Tyson J, Lambert C, Stevens KM, Montoya A, Shliaha PV, Picardeau M, Sockett RE, Luger K, Warnecke T. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat Microbiol 2023; 8:2006-2019. [PMID: 37814071 PMCID: PMC10627809 DOI: 10.1038/s41564-023-01492-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
Histone proteins bind DNA and organize the genomes of eukaryotes and most archaea, whereas bacteria rely on different nucleoid-associated proteins. Homology searches have detected putative histone-fold domains in a few bacteria, but whether these function like archaeal/eukaryotic histones is unknown. Here we report that histones are major chromatin components in the bacteria Bdellovibrio bacteriovorus and Leptospira interrogans. Patterns of sequence evolution suggest important roles for histones in additional bacterial clades. Crystal structures (<2.0 Å) of the B. bacteriovorus histone (Bd0055) dimer and the histone-DNA complex confirm conserved histone-fold topology but indicate a distinct DNA-binding mode. Unlike known histones in eukaryotes, archaea and viruses, Bd0055 binds DNA end-on, forming a sheath of dimers encasing straight DNA rather than wrapping DNA around their outer surface. Our results demonstrate that histones are present across the tree of life and highlight potential evolutionary innovation in how they associate with DNA.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Shawn P Laursen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Paul Radford
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Jess Tyson
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Carey Lambert
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Alex Montoya
- Medical Research Council London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Pavel V Shliaha
- Medical Research Council London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - R Elizabeth Sockett
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
5
|
Talbert PB, Armache KJ, Henikoff S. Viral histones: pickpocket's prize or primordial progenitor? Epigenetics Chromatin 2022; 15:21. [PMID: 35624484 PMCID: PMC9145170 DOI: 10.1186/s13072-022-00454-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes. Here, we review what is known of viral histones and discuss their possible origins and functions. We consider how the viral life cycle may affect their properties and histories, and reflect on the possible roles of viruses in the origin of the nucleus of modern eukaryotic cells.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|