1
|
Clark AC, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Alexander A, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. Mol Ecol Resour 2024; 24:e13901. [PMID: 38009398 DOI: 10.1111/1755-0998.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Winkler L, Lindholm AK. A meiotic driver alters sperm form and function in house mice: a possible example of spite. Chromosome Res 2022; 30:151-164. [PMID: 35648282 PMCID: PMC9508062 DOI: 10.1007/s10577-022-09695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This system is thought to result in poorly and normally motile sperm subpopulations within + /t sperm, leaving t sperm unharmed. Conversely, we found that the fastest quartile of sperm from + /t males swam more slowly, both forwards and along their travel path, and had reduced straightness and linearity, compared to the fastest quartile of + / + sperm. Moreover, sperm from + /t males had shorter tails and narrower heads than + / + sperm, and these morphological differences covaried with motility differences. Finally, + /t traits did not show evidence of bimodal distributions. We conclude that the t haplotype drive results in lasting damage to the motility of both + and t developing sperm, although previous studies indicate that + must be more harmed than t sperm. This damage to all sperm may explain the low success of + /t males in sperm competition with + / + males, seen in earlier studies. We propose that the harm the t causes to itself could be termed 'spiteful', which may also be common to other gamete-harming meiotic drive systems.
Collapse
Affiliation(s)
- Lennart Winkler
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Runge JN, Kokko H, Lindholm AK. Selfish migrants: How a meiotic driver is selected to increase dispersal. J Evol Biol 2022; 35:621-632. [PMID: 35255164 PMCID: PMC9311743 DOI: 10.1111/jeb.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Meiotic drivers are selfish genetic elements that manipulate meiosis to increase their transmission to the next generation to the detriment of the rest of the genome. One example is the t haplotype in house mice, which is a naturally occurring meiotic driver with deleterious traits—poor fitness in polyandrous matings and homozygote inviability or infertility—that prevent its fixation. Recently, we discovered and validated a novel effect of t in a long‐term field study on free‐living wild house mice and with experiments: t‐carriers are more likely to disperse. Here, we ask what known traits of the t haplotype can select for a difference in dispersal between t‐carriers and wildtype mice. To that end, we built individual‐based models with dispersal loci on the t and the homologous wildtype chromosomes. We also allow for density‐dependent expression of these loci. The t haplotype consistently evolves to increase the dispersal propensity of its carriers, particularly at high densities. By examining variants of the model that modify different costs caused by t, we show that the increase in dispersal is driven by the deleterious traits of t, disadvantage in polyandrous matings and lethal homozygosity or male sterility. Finally, we show that an increase in driver‐carrier dispersal can evolve across a range of values in driver strength and disadvantages.
Collapse
Affiliation(s)
- Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Kelemen RK, Elkrewi M, Lindholm AK, Vicoso B. Novel patterns of expression and recruitment of new genes on the t-haplotype, a mouse selfish chromosome. Proc Biol Sci 2022; 289:20211985. [PMID: 35135349 PMCID: PMC8826135 DOI: 10.1098/rspb.2021.1985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The t-haplotype of mice is a classical model for autosomal transmission distortion. A largely non-recombining variant of the proximal region of chromosome 17, it is transmitted to more than 90% of the progeny of heterozygous males through the disabling of sperm carrying a standard chromosome. While extensive genetic and functional work has shed light on individual genes involved in drive, much less is known about the evolution and function of the rest of its hundreds of genes. Here, we characterize the sequence and expression of dozens of t-specific transcripts and of their chromosome 17 homologues. Many genes showed reduced expression of the t-allele, but an equal number of genes showed increased expression of their t-copy, consistent with increased activity or a newly evolved function. Genes on the t-haplotype had a significantly higher non-synonymous substitution rate than their homologues on the standard chromosome, with several genes harbouring dN/dS ratios above 1. Finally, the t-haplotype has acquired at least two genes from other chromosomes, which show high and tissue-specific expression. These results provide a first overview of the gene content of this selfish element, and support a more dynamic evolutionary scenario than expected of a large genomic region with almost no recombination.
Collapse
Affiliation(s)
- Reka K. Kelemen
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, 190, 8057 Zurich, Switzerland
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria
| |
Collapse
|