1
|
Gai D, Caviness PC, Lazarenko OP, Chen JF, Randolph CE, Zhang Z, Cheng Y, Sun F, Xu H, Blackburn ML, Tricot G, Shaughnessy JD, Chen JR, Zhan F. Cystatin M/E ameliorates bone resorption through increasing osteoclastic cell estrogen influx. RESEARCH SQUARE 2024:rs.3.rs-4313179. [PMID: 38766009 PMCID: PMC11100902 DOI: 10.21203/rs.3.rs-4313179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells. In this study, both MM- and ovariectomy (OVX)-induced osteoporotic mouse models were used to compare the effects of recombinant mouse CST6 (rmCst6) and ZA on preventing bone loss. μCT showed that rmCst6 and ZA had similar effects on improving percent bone volume, and inhibited differentiation of non-adherent bone marrow cells into mature osteoclasts. Single-cell RNA sequencing showed that rmCst6 and not ZA treatment reduced bone marrow macrophage percentage in the MM mouse model compared to controls. Protein and mRNA arrays showed that both rmCst6 and ZA significantly inhibit OVX-induced expression of inflammatory cytokines. For OVX mice, ERα protein expression in bone was brought to sham surgery level by only rmCst6 treatments. rmCst6 significantly increased mRNA and protein levels of ERα and significantly increased total intracellular estrogen concentrations for ex vivo osteoclast precursor cell cultures. Based on these results, we conclude that CST6 improves MM or OVX bone loss models by increasing the expression of estrogen receptors as well as the intracellular estrogen concentration in osteoclast precursors, inhibiting their maturation.
Collapse
Affiliation(s)
- Dongzheng Gai
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Perry C. Caviness
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Oxana P. Lazarenko
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jennifer F. Chen
- Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR, 72701, USA
| | - Christopher E. Randolph
- Center for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Zijun Zhang
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael L Blackburn
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Guido Tricot
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - John D Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jin-Ran Chen
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
3
|
Sungkhaphan P, Thavornyutikarn B, Muangsanit P, Kaewkong P, Kitpakornsanti S, Pornsuwan S, Singhatanadgit W, Janvikul W. Dual-Functional Drug Delivery System for Bisphosphonate-Related Osteonecrosis Prevention and Its Bioinspired Releasing Model and In Vitro Assessment. ACS OMEGA 2023; 8:26561-26576. [PMID: 37521598 PMCID: PMC10373185 DOI: 10.1021/acsomega.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Clindamycin (CDM)/geranylgeraniol (GGOH)-loaded plasma-treated mesoporous silica nanoparticles/carboxymethyl chitosan composite hydrogels (CHG60 and CHG120) were developed for the prevention of medication-related osteonecrosis of the jaw associated with bisphosphonates (MRONJ-B). The pore structure and performances of CHGs, e.g., drug release profiles and kinetics, antibacterial activity, zoledronic acid (ZA)-induced cytotoxicity reversal activity, and acute cytotoxicity, were evaluated. The bioinspired platform mimicking in vivo fibrin matrices was also proposed for the in vitro/in vivo correlation. CHG120 was further encapsulated in the human-derived fibrin, generating FCHG120. The SEM and μCT images revealed the interconnected porous structures of CHG120 in both pure and fibrin-surrounding hydrogels with %porosity of 75 and 36%, respectively, indicating the presence of fibrin inside the hydrogel pores, besides its peripheral region, which was evidenced by confocal microscopy. The co-presence of GGOH moderately decelerated the overall releases of CDM from CHGs in the studied releasing fluids, i.e., phosphate buffer saline-based fluid (PBB) and simulated interstitial fluid (SIF). The whole-lifetime release patterns of CDM, fitted by the Ritger-Peppas equation, appeared nondifferentiable, divided into two releasing stages, i.e., rapid and steady releasing stages, whereas the biphasic drug release patterns of GGOH were observed with Phase I and II releases fitted by the Higuchi and Ritger-Peppas equations, respectively. Notably, the burst releases of both drugs were subsided with lengthier durations (up to 10-12 days) in SIF, compared with those in PBB, enabling CHGs to elicit satisfactory antibacterial and ZA cytotoxicity reversal activities for MRONJ-B prevention. The fibrin network in FCHG120 further reduced and sustained the drug releases for at least 14 days, lengthening bactericidal and ZA cytotoxicity reversal activities of FCHG and decreasing in vitro and in ovo acute drug toxicity. This highlighted the significance of fibrin matrices as appropriate in vivo-like platforms to evaluate the performance of an implant.
Collapse
Affiliation(s)
- Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Boonlom Thavornyutikarn
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Papon Muangsanit
- National
Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Pakkanun Kaewkong
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Setthawut Kitpakornsanti
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | | | - Weerachai Singhatanadgit
- Faculty
of Dentistry and Research Unit in Mineralized Tissue Reconstruction, Thammasat University (Rangsit Campus), Khlong Luang 12120, Thailand
| | - Wanida Janvikul
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, Khlong Luang 12120, Thailand
| |
Collapse
|
4
|
Effect of Dietary Geranylgeraniol and Green Tea Polyphenols on Glucose Homeostasis, Bone Turnover Biomarkers, and Bone Microstructure in Obese Mice. Int J Mol Sci 2023; 24:ijms24020979. [PMID: 36674494 PMCID: PMC9866936 DOI: 10.3390/ijms24020979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Previously, we demonstrated that the administration of either geranylgeraniol (GGOH) or green tea polyphenols (GTP) improved bone health. This study examined the combined effects of GGOH and GTP on glucose homeostasis in addition to bone remodeling in obese mice. We hypothesized that GGOH and GTP would have an additive or synergistic effect on improving glucose homeostasis and bone remodeling possibly in part via suppression of proinflammatory cytokines. Forty-eight male C57BL/6J mice were assigned to a high-fat diet (control), HFD + 400 mg GGOH/kg diet (GG), HFD + 0.5% GTP water (TP), or HFD + GGOH + GTP (GGTP) diet for 14 weeks. Results demonstrated that GTP supplementation improved glucose tolerance in obese mice. Neither GGOH nor GTP affected pancreas insulin or bone formation procollagen type I intact N-terminal, bone volume at the lumbar vertebrae, or bone parameters at the trabecular bone and cortical bone of the femur. There was an interactive effect for serum bone resorption collagen type 1 cross-linked C-telopeptide concentrations, resulting in no-GGOH and no-GTP groups having the highest values. GGOH increased trabecular number and decreased trabecular separation at the lumbar vertebrae. GTP increased trabecular thickness at lumbar vertebrae. The GG group produced the greatest connectivity density and the lowest structure model index. Only GTP, not GGOH, decreased adipokines concentrations (resistin, leptin, monocyte chemoattractant protein-1, and interleukin-6). In an obese male mouse model, individual GGOH and GTP supplementation improved glucose homeostasis, serum CTX, and trabecular microstructure of LV-4. However, the combined GGOH and GTP supplementation compromises such osteoprotective effects on serum CTX and trabecular bone of obese mice.
Collapse
|
5
|
Rattanawonsakul K, Bullock G, Bolt R, Claeyssens F, Atkins S, Hearnden V. In vitro Effect of Geranylgeraniol (GGOH) on Bisphosphonate-Induced Cytotoxicity of Oral Mucosa Cells. FRONTIERS IN ORAL HEALTH 2022; 3:892615. [PMID: 35795156 PMCID: PMC9251184 DOI: 10.3389/froh.2022.892615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an often-severe complication found in patients receiving bisphosphonates in the management of Paget's, osteoporosis and metastatic bone cancer. Mucosal breakdown with bone exposure is a primary clinical presentation of MRONJ linked to the inhibitory effect of nitrogen-containing bisphosphonates (N-BP) on the mevalonate pathway. Geranylgeraniol (GGOH) has demonstrated a rescue effect on N-BP-treated osteoclasts but the biological effects on oral soft tissues and cells remain unclear. This study aimed to determine whether GGOH could prevent bisphosphonate induced toxicity to oral mucosa cells in vitro. Primary oral fibroblasts and keratinocytes were exposed to different GGOH concentrations or GGOH in combination with two nitrogen-containing bisphosphonates, zoledronic acid (ZA) or pamidronic acid (PA), for 72 h. The metabolic activity of each cell type was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. GGOH without bisphosphonates significantly reduced the metabolic activity of oral mucosa cells. Fibroblasts treated with GGOH and ZA in combination showed a slight increase in metabolic status compared to fibroblasts treated with ZA alone, however this positive effect was not observed in keratinocytes. In the presence of PA, GGOH was unable to increase the metabolic activity of either cell type. These findings demonstrate that GGOH is toxic to oral mucosa cells and that GGOH was not able to prevent bisphosphonate induced toxicity. These data show that GGOH does not have therapeutic potential for bisphosphonate-induced soft tissue toxicity in MRONJ and the use of GGOH as an MRONJ treatment should be strongly reconsidered.
Collapse
Affiliation(s)
- Krit Rattanawonsakul
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - George Bullock
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: George Bullock
| | - Robert Bolt
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Simon Atkins
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Chin KY, Ekeuku SO, Trias A. The Role of Geranylgeraniol in Managing Bisphosphonate-Related Osteonecrosis of the Jaw. Front Pharmacol 2022; 13:878556. [PMID: 35600875 PMCID: PMC9114760 DOI: 10.3389/fphar.2022.878556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (ONJ) is a rare but significant adverse side effect of antiresorptive drugs. Bisphosphonate-related ONJ (BRONJ) is the most prevalent condition due to the extensive use of the drug in cancer and osteoporosis treatment. Nitrogen-containing bisphosphonates suppress osteoclastic resorption by inhibiting farnesyl pyrophosphate synthase in the mevalonate pathway, leading to deficiency of the substrate for GTPase prenylation. The bone remodelling process is uncoupled, subsequently impairing bone healing and causing ONJ. Targeted administration of geranylgeraniol (GGOH) represents a promising approach to mitigate BRONJ because GGOH is a substrate for GTPase prenylation. In the current review, the in vitro effects of GGOH on osteoclasts, osteoblasts and other related cells of the jaw are summarised. We also present and appraise the current in vivo evidence of GGOH in managing BRONJ in animal models. Lastly, several considerations of using GGOH in the clinical management of BRONJ are highlighted. As a conclusion, GGOH is a promising topical agent to manage BRONJ, pending more research on an effective delivery system and validation from a clinical trial.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- *Correspondence: Kok-Yong Chin,
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Anne Trias
- American River Nutrition, Hadley, MA, United States
| |
Collapse
|
7
|
Singhatanadgit W, Hankamolsiri W, Janvikul W. Geranylgeraniol prevents zoledronic acid-mediated reduction of viable mesenchymal stem cells via induction of Rho-dependent YAP activation. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202066. [PMID: 34113452 PMCID: PMC8187992 DOI: 10.1098/rsos.202066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 05/03/2023]
Abstract
Long-term use of zoledronic acid (ZA) increases the risk of medication-related osteonecrosis of the jaw (MRONJ). This may be attributed to ZA-mediated reduction of viable mesenchymal stem cells (MSCs). ZA inhibits protein geranylgeranylation, thus suppressing cell viability and proliferation. Geranylgeraniol (GGOH), which is a naturally found intermediate compound in the mevalonate pathway, has positive effects against ZA. However, precise mechanisms by which GGOH may help preserve stem cell viability against ZA are not fully understood. The objective of this study was to investigate the cytoprotective mechanisms of GGOH against ZA. The results showed that while ZA dramatically decreased the number of viable MSCs, GGOH prevented this negative effect. GGOH-rescued ZA-exposed MSCs formed mineralization comparable to that produced by normal MSCs. Mechanistically, GGOH preserved the number of viable MSCs by its reversal of ZA-mediated Ki67+ MSC number reduction, cell cycle arrest and apoptosis. Moreover, GGOH prevented ZA-suppressed RhoA activity and YAP activation. The results also established the involvement of Rho-dependent YAP and YAP-mediated CDK6 in the cytoprotective ability of GGOH against ZA. In conclusion, GGOH preserves a pool of viable MSCs with osteogenic potency against ZA by rescuing the activity of Rho-dependent YAP activation, suggesting GGOH as a promising agent and YAP as a potential therapeutic target for MRONJ.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Faculty of Dentistry, Thammasat University, Pathumthani, 12121, Thailand
- Research Unit in Mineralized Tissue Reconstruction, Thammasat University, Pathumthani, 12121, Thailand
| | - Weerawan Hankamolsiri
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani 12120, Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani 12120, Thailand
| |
Collapse
|