1
|
Schebeck M, Lehmann P, Laparie M, Bentz BJ, Ragland GJ, Battisti A, Hahn DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol 2024; 39:757-770. [PMID: 38777634 DOI: 10.1016/j.tree.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Insects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group. Due to the overall similarities in diapause strategies, we can better estimate the impacts of anthropogenic change on forest insect populations and, consequently, on key ecosystems.
Collapse
Affiliation(s)
- Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU University, A-1190 Vienna, Austria.
| | - Philipp Lehmann
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany; Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden; Bolin Centre for Climate Research, SE-10691 Stockholm, Sweden
| | | | - Barbara J Bentz
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan, UT 84321, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80204, USA
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, I-35020 Legnaro, Italy
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
2
|
Boardman L. Cross-talk between low temperature and other environmental factors. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101193. [PMID: 38490451 DOI: 10.1016/j.cois.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Low temperatures are rarely experienced in isolation. The impacts of low temperatures on insects can be exacerbated or alleviated by the addition of other environmental factors, including, for example, desiccation, hypoxia, or infection. One way in which environmental factors can interact is through cross-talk where different factors enact common signaling pathways. In this review, I highlight the breadth of abiotic and biotic factors that can interact with low-temperature tolerance in both natural and artificial environments; and discuss some of the candidate pathways that are possibly responsible for cross-talk between several factors. Specifically, I discuss three interesting candidates: the neurohormone octopamine, circadian clock gene vrille, and microbes. Finally, I discuss applications of cross-talk studies, and provide recommendations for researchers.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
3
|
Fyie LR, Westby KM, Meuti ME. Light pollution disrupts circadian clock gene expression in two mosquito vectors during their overwintering dormancy. Sci Rep 2024; 14:2398. [PMID: 38287057 PMCID: PMC10824765 DOI: 10.1038/s41598-024-52794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Artificial light at night (ALAN) is an increasingly important form of environmental disturbance as it alters Light:Dark cycles that regulate daily and seasonal changes in physiology and phenology. The Northern house mosquito (Culex pipiens) and the tiger mosquito (Aedes albopictus) enter an overwintering dormancy known as diapause that is cued by short days. These two species differ in diapause strategy: Cx. pipiens diapause as adult females while Ae. albopictus enter a maternally-programmed, egg diapause. Previous studies found that ALAN inhibits diapause in both species, but the mechanism is unknown. As the circadian clock is implicated in the regulation of diapause in many insects, we examined whether exposure to ALAN altered the daily expression of core circadian cloc genes (cycle, Clock, period, timeless, cryptochrome 1, cryptochrome 2, and Par domain protein 1) in these two species when reared under short-day, diapause-inducing conditions. We found that exposure to ALAN altered the abundance of several clock genes in adult females of both species, but that clock gene rhythmicity was maintained for most genes. ALAN also had little effect on clock gene abundance in mature oocytes that were dissected from female Ae. albopictus that were reared under short day conditions. Our findings indicate that ALAN may inhibit diapause initiation through the circadian clock in two medically-important mosquitoes.
Collapse
Affiliation(s)
- Lydia R Fyie
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| | - Katie M Westby
- Tyson Research Center, Washington University in St. Louis, 6750 Tyson Valley Road, Eureka, MO, 63025, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Fyie LR, Tronetti HR, Gardiner MM, Meuti ME. Potential for urban warming to postpone overwintering dormancy of temperate mosquitoes. J Therm Biol 2023; 115:103594. [PMID: 37429087 PMCID: PMC11493156 DOI: 10.1016/j.jtherbio.2023.103594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
Cities are generally hotter than surrounding rural areas due to the Urban Heat Island (UHI) effect. These increases in temperature advance plant and animal phenology, development, and reproduction in the spring. However, research determining how increased temperatures affect the seasonal physiology of animals in the fall has been limited. The Northern house mosquito, Culex pipiens, is abundant in cities and transmits several pathogens including West Nile virus. Females of this species enter a state of developmental arrest, or reproductive diapause, in response to short days and low temperatures during autumn. Diapausing females halt reproduction and blood-feeding, and instead accumulate fat and seek sheltered overwintering sites. We found that exposure to increased temperatures in the lab that mimic the UHI effect induced ovarian development and blood-feeding, and that females exposed to these temperatures were as fecund as non-diapausing mosquitoes. We also found that females exposed to higher temperatures had lower survival rates in winter-like conditions, despite having accumulated equivalent lipid reserves relative to their diapausing congeners. These data suggest that urban warming may inhibit diapause initiation in the autumn, thereby extending the active biting season of temperate mosquitoes.
Collapse
Affiliation(s)
- Lydia R Fyie
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210.
| | - Hannah R Tronetti
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Rd, Columbus, OH, USA, 43210
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210
| |
Collapse
|
5
|
Tougeron K, Sanders D. Combined light pollution and night warming as a novel threat to ecosystems. Trends Ecol Evol 2023:S0169-5347(23)00134-9. [PMID: 37286418 DOI: 10.1016/j.tree.2023.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Artificial light at night (ALAN) and night-time warming (NW) are a combined threat altering the night-time environment and the behaviour and physiology of organisms. Impacts on fitness and the nocturnal niche have knock-on effects for ecosystem structure and function. Understanding the way both stressors interact is critical for making ecological predictions.
Collapse
Affiliation(s)
- Kévin Tougeron
- Institut de Recherche en Biosciences, Département de Biologie, EICG Laboratory, Université de Mons, Mons, Belgium; UMR 7058 CNRS EDYSAN, Université de Picardie Jules Verne, Amiens, France.
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| |
Collapse
|
6
|
Diamond SE, Bellino G, Deme GG. Urban insect bioarks of the 21st century. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101028. [PMID: 37024047 DOI: 10.1016/j.cois.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
Insects exhibit divergent biodiversity responses to cities. Many urban populations are not at equilibrium: biodiversity decline or recovery from environmental perturbation is often still in progress. Substantial variation in urban biodiversity patterns suggests the need to understand its mechanistic basis. In addition, current urban infrastructure decisions might profoundly influence future biodiversity trends. Although many nature-based solutions to urban climate problems also support urban insect biodiversity, trade-offs are possible and should be avoided to maximize biodiversity-climate cobenefits. Because insects are coping with the dual threats of urbanization and climate change, there is an urgent need to design cities that facilitate persistence within the city footprint or facilitate compensatory responses to global climate change as species transit through the city footprint.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Grace Bellino
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gideon G Deme
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Chatelain M, Rüdisser J, Traugott M. Urban-driven decrease in arthropod richness and diversity associated with group-specific changes in arthropod abundance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.980387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Habitat loss and fragmentation caused by land-use changes in urbanised landscapes are main drivers of biodiversity loss and changes in species assemblages. While the effects of urbanisation on arthropods has received increasing attention in the last decade, most of the studies were taxon-specific, limited in time and/or covering only part of the habitats along the rural-urban gradient. To comprehensively assess the effects of urbanisation on arthropod communities, here, we sampled arthropods at 180 sites within an urban mosaic in the city of Innsbruck (Austria) using a systematic grid. At each site, arthropods were collected in three micro-habitats: the canopy, the bush layer and tree bark. They were identified to the family, infra-order or order level, depending on the taxonomic group. Urbanisation level was estimated by five different proxies extracted from land use/land cover data (e.g., impervious surface cover), all of them calculated in a 100, 500, and 1,000 m radius around the sampling points, and three indexes based on distance to settlements. We tested for the effects of different levels of urbanisation on (i) overall arthropod abundance, richness and diversity and (ii) community composition using redundancy analyses. In the canopy and the bush layer, arthropod richness and diversity decreased with increasing urbanisation level, suggesting that urbanisation acts as a filter on taxonomic groups. Our data on arthropod abundance further support this hypothesis and suggest that urbanisation disfavours wingless groups, particularly so on trees. Indeed, urbanisation was correlated to lower abundances of spiders and springtails, but higher abundances of aphids, barklice and flies. Arthropod community composition was better explained by a set of urbanisation proxies, especially impervious surface cover measured in a 100, 500, and 1,000 m radius. Arthropods are key elements of food webs and their availability in urban environments is expected to have bottom-up effects, thus shaping foraging behaviour, distribution, and/or success of species at higher trophic levels. Studying ecological networks in urban ecosystems is the next step that will allow to understand how urbanisation alters biodiversity.
Collapse
|
8
|
Abstract
Diapause, a stage-specific developmental arrest, is widely exploited by insects to bridge unfavorable seasons. Considerable progress has been made in understanding the ecology, physiology and evolutionary implications of insect diapause, yet intriguing questions remain. A more complete understanding of diapause processes on Earth requires a better geographic spread of investigations, including more work in the tropics and at high latitudes. Questions surrounding energy management and trade-offs between diapause and non-diapause remain understudied. We know little about how maternal effects direct the diapause response, and regulators of prolonged diapause are also poorly understood. Numerous factors that were recently linked to diapause are still waiting to be placed in the regulatory network leading from photoreception to engagement of the diapause program. These factors include epigenetic processes and small noncoding RNAs, and emerging data also suggest a role for the microbiome in diapause regulation. Another intriguing feature of diapause is the complexity of the response, resulting in a diverse suite of responses that comprise the diapause syndrome. Select transcription factors likely serve as master switches turning on these diverse responses, but we are far from understanding the full complexity. The richness of species displaying diapause offers a platform for seeking common components of a 'diapause toolbox'. Across latitudes, during invasion events and in a changing climate, diapause offers grand opportunities to probe evolutionary change and speciation. At a practical level, diapause responses can be manipulated for insect control and long-term storage. Diapausing insects also contain a treasure trove of pharmacological compounds and offer promising models for human health.
Collapse
Affiliation(s)
- David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Wolkoff M, Fyie L, Meuti M. Light Pollution Disrupts Seasonal Differences in the Daily Activity and Metabolic Profiles of the Northern House Mosquito, Culex pipiens. INSECTS 2023; 14:64. [PMID: 36661993 PMCID: PMC9865375 DOI: 10.3390/insects14010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The Northern House mosquito, Culex pipiens, is an important disease vector, and females are capable of surviving the winter in a state of overwintering diapause. This species' diapause response has been extensively studied, and recent evidence suggests that the circadian clock is involved in measuring seasonal changes in daylength to initiate the diapause response. However, differences in the circadian activity of diapausing and non-diapausing Cx. pipiens have not been thoroughly investigated. Additionally, recent findings indicate that artificial light at night (ALAN) can disrupt mosquito diapause, potentially prolonging the mosquito biting season. We compared the circadian locomotor activity of mosquitoes reared in diapause-averting, long-day conditions and diapause-inducing, short-day conditions with and without ALAN to elucidate the interplay between circadian activity, diapause, and light pollution. We also uncovered metabolic differences between mosquitoes reared under diapausing and non-diapausing photoperiods with and without ALAN by measuring the concentration of protein, fructose, glycogen, water-soluble carbohydrates, and lipids. We found that ALAN exposure altered several diapause-associated phenotypes including slightly, but not significantly, increasing activity levels in short day-reared mosquitoes; and preventing some short day-reared mosquitoes from accumulating lipids. ALAN also significantly reduced glycogen and water-soluble carbohydrate levels in long day-reared mosquitoes. Based on our findings, light pollution may decrease insect fitness by perturbing metabolism, and may also impact several phenotypes associated with insect diapause, potentially extending the mosquito biting season and preventing insects in urban environments from overwintering successfully.
Collapse
|
10
|
Ichikawa I, Kuriwada T. The combined effects of artificial light at night and anthropogenic noise on life history traits in ground crickets. Ecol Res 2023. [DOI: 10.1111/1440-1703.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Izumi Ichikawa
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| | - Takashi Kuriwada
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| |
Collapse
|
11
|
Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proc Natl Acad Sci U S A 2021; 118:2106006118. [PMID: 34580222 PMCID: PMC8501875 DOI: 10.1073/pnas.2106006118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/05/2022] Open
Abstract
Cities represent novel environments with altered seasonality; they are warmer, which may accelerate growth, but light pollution can also lengthen days, misleading organisms that use daylength to predict seasonal change. Using long-term observational data, we show that urban populations of a butterfly and a moth have longer flight seasons than neighboring rural populations for six Nordic city regions. Next, using laboratory experiments, we show that the induction of diapause by daylength has evolved in urban populations in the direction predicted by urban warming. We thus show that the altered seasonality of urban environments can lead to corresponding evolutionary changes in the seasonal responses of urban populations, a pattern that may be repeated in other species. Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napi (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ectotherms and may contribute to ecoevolutionary dynamics in cities.
Collapse
|