2
|
Christiaanse JC, Antolínez JAA, Luijendijk AP, Athanasiou P, Duarte CM, Aarninkhof S. Distribution of global sea turtle nesting explained from regional-scale coastal characteristics. Sci Rep 2024; 14:752. [PMID: 38191897 PMCID: PMC10774326 DOI: 10.1038/s41598-023-50239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Climate change and human activity threaten sea turtle nesting beaches through increased flooding and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve and expand these habitats. While numerous local studies exist, a comprehensive global analysis of environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored. Here, we relate the distribution of global sea turtle nesting to 22 coastal indicators, spanning hydrodynamic, atmospheric, geophysical, habitat, and human processes. Using state-of-the-art global datasets and a novel 50-km-resolution hexagonal coastline grid (Coastgons), we employ machine learning to identify spatially homogeneous patterns in the indicators and correlate these to the occurrence of nesting grounds. Our findings suggest sea surface temperature, tidal range, extreme surges, and proximity to coral and seagrass habitats significantly influence global nesting distribution. Low tidal ranges and low extreme surges appear to be particularly favorable for individual species, likely due to reduced nest flooding. Other indicators, previously reported as influential (e.g., precipitation and wind speed), were not as important in our global-scale analysis. Finally, we identify new, potentially suitable nesting regions for each species. On average, [Formula: see text] of global coastal regions between [Formula: see text] and [Formula: see text] latitude could be suitable for nesting, while only [Formula: see text] is currently used by turtles, showing that the realized niche is significantly smaller than the fundamental niche, and that there is potential for sea turtles to expand their nesting habitat. Our results help identify suitable nesting conditions, quantify potential hazards to global nesting habitats, and lay a foundation for nature-based solutions to preserve and potentially expand these habitats.
Collapse
Affiliation(s)
- Jakob C Christiaanse
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands.
| | - José A A Antolínez
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
| | - Arjen P Luijendijk
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
- Deltares , Delft, Netherlands
| | | | - Carlos M Duarte
- Biological Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan Aarninkhof
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Fuentes MMPB, Santos AJB, Abreu-Grobois A, Briseño-Dueñas R, Al-Khayat J, Hamza S, Saliba S, Anderson D, Rusenko KW, Mitchell NJ, Gammon M, Bentley BP, Beton D, Booth DTB, Broderick AC, Colman LP, Snape RTE, Calderon-Campuzano MF, Cuevas E, Lopez-Castro MC, Flores-Aguirre CD, Mendez de la Cruz F, Segura-Garcia Y, Ruiz-Garcia A, Fossette S, Gatto CR, Reina RD, Girondot M, Godfrey M, Guzman-Hernandez V, Hart CE, Kaska Y, Lara PH, Marcovaldi MAGD, LeBlanc AM, Rostal D, Liles MJ, Wyneken J, Lolavar A, Williamson SA, Manoharakrishnan M, Pusapati C, Chatting M, Mohd Salleh S, Patricio AR, Regalla A, Restrepo J, Garcia R, Santidrián Tomillo P, Sezgin C, Shanker K, Tapilatu F, Turkozan O, Valverde RA, Williams K, Yilmaz C, Tolen N, Nel R, Tucek J, Legouvello D, Rivas ML, Gaspar C, Touron M, Genet Q, Salmon M, Araujo MR, Freire JB, Castheloge VD, Jesus PR, Ferreira PD, Paladino FV, Montero-Flores D, Sozbilen D, Monsinjon JR. Adaptation of sea turtles to climate warming: Will phenological responses be sufficient to counteract changes in reproductive output? GLOBAL CHANGE BIOLOGY 2024; 30:e16991. [PMID: 37905464 DOI: 10.1111/gcb.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.
Collapse
Affiliation(s)
- M M P B Fuentes
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A J B Santos
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A Abreu-Grobois
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - R Briseño-Dueñas
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - J Al-Khayat
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Hamza
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Saliba
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - D Anderson
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - K W Rusenko
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - N J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Gammon
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - B P Bentley
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - D Beton
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
| | - D T B Booth
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - A C Broderick
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - L P Colman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - R T E Snape
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - M F Calderon-Campuzano
- Programa de Protección y Conservación de Tortugas Marinas, Convenio FONATUR-Instituto de Ciencias del Mar y Limnología-UNAM, Mazatlán, Sinaloa, Mexico
| | - E Cuevas
- Instituto de Investigaciones Oceanologicas, Universidad Autonoma de Baja California, Ensenada, Mexico
| | - M C Lopez-Castro
- Pronatura Península de Yucatán, A. C. Programa para la Conservación de la Tortuga Marina, Mérida, Yucatán, Mexico
| | - C D Flores-Aguirre
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F Mendez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Y Segura-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - A Ruiz-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - S Fossette
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - C R Gatto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - R D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - M Girondot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - M Godfrey
- North Carolina Wildlife Resources Commission, Beaufort, North Carolina, USA
- Duke Marine Laboratory, Nicholas School of Environment, Duke University, Beaufort, North Carolina, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - C E Hart
- Centro de Investigaciones Oceánicas del Mar de Cortés-Gran Acuario de Mazatlán, Mazatlán, Mexico
| | - Y Kaska
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - P H Lara
- Fundação Projeto Tamar, Florianópolis, Brazil
| | | | - A M LeBlanc
- Georgia Southern University, Statesboro, Georgia, USA
| | - D Rostal
- Georgia Southern University, Statesboro, Georgia, USA
| | - M J Liles
- Asociacion ProCosta, San Salvador, El Salvador
| | - J Wyneken
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - A Lolavar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - S A Williamson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | | | | | - M Chatting
- Environmental Science Centre, Qatar University, Doha, Qatar
- School of Civil Engineering, University College Dublin, Dublin, Ireland
| | - S Mohd Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - A R Patricio
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Ispa-Instituto Universitário de Ciências Psicológicas, Lisbon, Portugal
| | - A Regalla
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | - J Restrepo
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | - R Garcia
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | | | - C Sezgin
- Sea Turtle Research, Rescue and Rehabilitation Center (DEKAMER), Mugla, Turkey
| | - K Shanker
- Dakshin Foundation, Bangalore, India
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - F Tapilatu
- Research Center of Pacific Marine Resources-University of Papua (UNIPA), Manokwari, Papua Barat, Indonesia
| | - O Turkozan
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, Turkey
| | - R A Valverde
- Sea Turtle Conservancy, Gainesville, Florida, USA
- Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - K Williams
- Caretta Research Project, Savannah, Georgia, USA
| | - C Yilmaz
- Hakkari University, Vocational School of Health Services, Hakkari, Turkey
| | - N Tolen
- Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - R Nel
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - J Tucek
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - D Legouvello
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - M L Rivas
- Department of Biology, University of Cadiz, Cadiz, Spain
| | - C Gaspar
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Touron
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - Q Genet
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Salmon
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - M R Araujo
- Ministerio de Medio Ambiente y Recursos Naturales, San Salvador, El Salvador
| | - J B Freire
- Fundação Espírito Santense de Tecnologia-FEST, Vitória, Espírito Santo, Brazil
| | | | - P R Jesus
- Econservation Estudos e Projetos Ambientais, Vitória, Espírito Santo, Brazil
| | - P D Ferreira
- Departamento de Gemologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - F V Paladino
- Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | | | - D Sozbilen
- Department of Veterinary, Acıpayam Vocational School, Pamukkale University, Denizli, Turkey
| | - J R Monsinjon
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Délégation Océan Indien (DOI), Le Port, La Réunion, France
| |
Collapse
|
5
|
Staines MN, Versace H, Laloë JO, Smith CE, Madden Hof CA, Booth DT, Tibbetts IR, Hays GC. Short-term resilience to climate-induced temperature increases for equatorial sea turtle populations. GLOBAL CHANGE BIOLOGY 2023; 29:6546-6557. [PMID: 37795641 DOI: 10.1111/gcb.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Projection models are being increasingly used to manage threatened taxa by estimating their responses to climate change. Sea turtles are particularly susceptible to climate change as they have temperature-dependent sex determination and increased sand temperatures on nesting beaches could result in the 'feminisation' of hatchling sex ratios for some populations. This study modelled likely long-term trends in sand temperatures and hatchling sex ratios at an equatorial nesting site for endangered green turtles (Chelonia mydas) and critically endangered hawksbill turtles (Eretmochelys imbricata). A total of 1078 days of sand temperature data were collected from 28 logger deployments at nest depth between 2018 and 2022 in Papua New Guinea (PNG). Long-term trends in sand temperature were generated from a model using air temperature as an environmental proxy. The influence of rainfall and seasonal variation on sand temperature was also investigated. Between 1960 and 2019, we estimated that sand temperature increased by ~0.6°C and the average hatchling sex ratio was relatively balanced (46.2% female, SD = 10.7). No trends were observed in historical rainfall anomalies and projections indicated no further changes to rainfall until 2100. Therefore, the sex ratio models were unlikely to be influenced by changing rainfall patterns. A relatively balanced sex ratio such as this is starkly different to the extremely female-skewed hatchling sex ratio (>99% female) reported for another Coral Sea nesting site, Raine Island (~850 km West). This PNG nesting site is likely rare in the global context, as it is less threatened by climate-induced feminisation. Although there is no current need for 'cooling' interventions, the mean projected sex ratios for 2020-2100 were estimated 76%-87% female, so future interventions may be required to increase male production. Our use of long-term sand temperature and rainfall trends has advanced our understanding of climate change impacts on sea turtles.
Collapse
Affiliation(s)
- Melissa N Staines
- School of the Environment, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hayley Versace
- Conflict Islands Conservation Initiative, Alotau, Milne Bay Province, Papua New Guinea
| | - Jacques-Olivier Laloë
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Caitlin E Smith
- World Wide Fund for Nature-Australia, Brisbane, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Hervey Bay, Australia
| | | | - David T Booth
- School of the Environment, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ian R Tibbetts
- School of the Environment, The University of Queensland, St. Lucia, Queensland, Australia
| | - Graeme C Hays
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|