1
|
Muhaxheri G, Santangelo CD. Bifurcations of inflating balloons and interacting hysterons. Phys Rev E 2024; 110:024209. [PMID: 39295065 DOI: 10.1103/physreve.110.024209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/21/2024]
Abstract
While many materials exhibit a complex, hysteretic response to external driving, there has been a surge of interest in how the complex dynamics of internal materials states can be understood and designed to process and store information. We consider a system of connected rubber balloons that can be described by a Preisach model of noninteracting hysterons under pressure control but for which the hysterons become coupled under volume control. We study this system by exploring the possible transition graphs, as well as by introducing a configuration space approach which tracks the volumes of each balloon. Changes in the transition graphs turn out to be related to changes in the topology of the configuration space of the balloons, providing a particularly geometric view of how transition graphs can be designed, as well as additional information on the existence of hidden metastable states. This class of systems is more general than just balloons.
Collapse
|
2
|
Liu J, Teunisse M, Korovin G, Vermaire IR, Jin L, Bense H, van Hecke M. Controlled pathways and sequential information processing in serially coupled mechanical hysterons. Proc Natl Acad Sci U S A 2024; 121:e2308414121. [PMID: 38768343 PMCID: PMC11145188 DOI: 10.1073/pnas.2308414121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The complex sequential response of frustrated materials results from the interactions between material bits called hysterons. Hence, a central challenge is to understand and control these interactions, so that materials with targeted pathways and functionalities can be realized. Here, we show that hysterons in serial configurations experience geometrically controllable antiferromagnetic-like interactions. We create hysteron-based metamaterials that leverage these interactions to realize targeted pathways, including those that break the return point memory property, characteristic of independent or weakly interacting hysterons. We uncover that the complex response to sequential driving of such strongly interacting hysteron-based materials can be described by finite state machines. We realize information processing operations such as string parsing in materia, and outline a general framework to uncover and characterize the FSMs for a given physical system. Our work provides a general strategy to understand and control hysteron interactions, and opens a broad avenue toward material-based information processing.
Collapse
Affiliation(s)
- Jingran Liu
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- Laboratory for Multiscale Mechanics and Medical Science, State Key Lab for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an710049, China
| | - Margot Teunisse
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| | - George Korovin
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
| | - Ivo R. Vermaire
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
| | - Lishuai Jin
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| | - Hadrien Bense
- AMOLF, 1098 XGAmsterdam, The Netherlands
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles, 1050Bruxelles, Belgium
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| |
Collapse
|
3
|
Kwakernaak LJ, van Hecke M. Counting and Sequential Information Processing in Mechanical Metamaterials. PHYSICAL REVIEW LETTERS 2023; 130:268204. [PMID: 37450791 DOI: 10.1103/physrevlett.130.268204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
Materials with an irreversible response to cyclic driving exhibit an evolving internal state which, in principle, encodes information on the driving history. Here we realize irreversible metamaterials that count mechanical driving cycles and store the result into easily interpretable internal states. We extend these designs to aperiodic metamaterials that are sensitive to the order of different driving magnitudes, and realize "lock and key" metamaterials that only reach a specific state for a given target driving sequence. Our metamaterials are robust, scalable, and extendable, give insight into the transient memories of complex media, and open new routes towards smart sensing, soft robotics, and mechanical information processing.
Collapse
Affiliation(s)
- Lennard J Kwakernaak
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, PO Box 9504, 2300 RA Leiden, Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, PO Box 9504, 2300 RA Leiden, Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
4
|
Shohat D, Lahini Y. Dissipation Indicates Memory Formation in Driven Disordered Systems. PHYSICAL REVIEW LETTERS 2023; 130:048202. [PMID: 36763418 DOI: 10.1103/physrevlett.130.048202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Disordered and amorphous materials often retain memories of perturbations they have experienced since preparation. Studying such memories is a gateway to understanding this challenging class of systems. However, it often requires the ability to measure local structural changes in response to external drives. Here, we show that dissipation is a generic macroscopic indicator of the memory of the largest perturbation. Through experiments in crumpled sheets under cyclic drive, we show that dissipation transiently increases when first surpassing the largest perturbation due to irreversible structural changes with unique statistics. This finding is used to devise novel memory readout protocols based on global observables only. The general applicability of this approach is demonstrated by revealing a similar memory effect in a three-dimensional amorphous solid.
Collapse
Affiliation(s)
- Dor Shohat
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Lahini
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Keim NC, Medina D. Mechanical annealing and memories in a disordered solid. SCIENCE ADVANCES 2022; 8:eabo1614. [PMID: 36197976 PMCID: PMC9534499 DOI: 10.1126/sciadv.abo1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Shearing a disordered or amorphous solid for many cycles with a constant strain amplitude can anneal it, relaxing a sample to a steady state that encodes a memory of that amplitude. This steady state also features a remarkable stability to amplitude variations that allows one to read the memory. Here, we shed light on both annealing and memory by considering how to mechanically anneal a sample to have as little memory content as possible. In experiments, we show that a "ring-down" protocol reaches a comparable steady state but with no discernible memories and minimal structural anisotropy. We introduce a method to characterize the population of rearrangements within a sample and show how it connects with the response to amplitude variation and the size of annealing steps. These techniques can be generalized to other forms of glassy matter and a wide array of disordered solids, especially those that yield by flowing homogeneously.
Collapse
Affiliation(s)
- Nathan C. Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Dani Medina
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
6
|
Ding J, van Hecke M. Sequential snapping and pathways in a mechanical metamaterial. J Chem Phys 2022; 156:204902. [DOI: 10.1063/5.0087863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Materials that feature bistable elements, hysterons, exhibit memory effects. Often, these hysterons are difficult to observe or control directly. Here, we introduce a mechanical metamaterial in which slender elements, interacting with pushers, act as mechanical hysterons. We show how we can tune the hysteron properties and pathways under cyclic compression by the geometric design of these elements and how we can tune the pathways of a given sample by tilting one of the boundaries. Furthermore, we investigate the effect of the coupling of a global shear mode to the hysterons as an example of the interactions between hysteron and non-hysteron degrees of freedom. We hope our work will inspire further studies on designer matter with targeted pathways.
Collapse
Affiliation(s)
- Jiangnan Ding
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
7
|
szulc A, Mungan M, Regev I. Cooperative effects driving the multi-periodic dynamics of cyclically sheared amorphous solids. J Chem Phys 2022; 156:164506. [DOI: 10.1063/5.0087164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When subject to cyclic forcing, amorphous solids can reach periodic, repetitive states, where the system behaves plastically, but the particles return to their initial positions after one or more forcing cycles, where the latter response is called multi-periodic. It is known that plasticity in amorphous materials is mediated by local rearrangements called ``soft spots' or ``shear transformation zones'.Experiments and simulations indicate that soft spots can be modeled as hysteretic two-state entities interacting via quadrupolar displacement fields generated when they switch states and that these interactions can give rise to multi-periodic behavior. However, how interactions facilitate multi-periodicity is unknown. Here we show, using a model of random interacting two-state systems and molecular dynamics simulations, that multi-periodicity arises from oscillations in the magnitudes of the switching field of soft spots which cause soft spots to be active during some forcing cycles and idle during others. We demonstrate that these oscillations result from cooperative effects facilitated by the frustrated interactions between the soft spots. The presence of such mechanisms has implications for manipulating memory in frustrated hysteretic systems.
Collapse
Affiliation(s)
- asaf szulc
- Department of Physics, Ben-Gurion University of the Negev, Israel
| | - Muhittin Mungan
- Rheinische Friedrich Wilhelms Universität Bonn Institute of Applied Mathematics, Germany
| | - Ido Regev
- Solar energy and environmental physics, Ben-Gurion University of the Negev - Sede Boqer Campus, Israel
| |
Collapse
|
8
|
van Hecke M. Profusion of transition pathways for interacting hysterons. Phys Rev E 2021; 104:054608. [PMID: 34942848 DOI: 10.1103/physreve.104.054608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 11/07/2022]
Abstract
The response, pathways, and memory effects of cyclically driven complex media can be captured by hysteretic elements called hysterons. Here we demonstrate the profound impact of hysteron interactions on pathways and memory. Specifically, while the Preisach model of independent hysterons features a restricted class of pathways which always satisfy return point memory, we show that three interacting hysterons generate more than 15 000 transition graphs, with most violating return point memory and having features completely distinct from the Preisach model. Exploring these opens a route to designer pathways and information processing in complex matter.
Collapse
Affiliation(s)
- Martin van Hecke
- AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands and Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, P.O. Box 9504, NL-2300 RA Leiden, Netherlands
| |
Collapse
|
9
|
Lindeman CW, Nagel SR. Multiple memory formation in glassy landscapes. SCIENCE ADVANCES 2021; 7:eabg7133. [PMID: 34380622 PMCID: PMC8357226 DOI: 10.1126/sciadv.abg7133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Cyclically sheared jammed packings form memories of the shear amplitude at which they were trained by falling into periodic orbits where each particle returns to the identical position in subsequent cycles. While simple models that treat clusters of rearranging particles as isolated two-state systems offer insight into this memory formation, they fail to account for the long training times and multiperiod orbits observed in simulated sheared packings. We show that adding interactions between rearranging clusters overcomes these deficiencies. In addition, interactions allow simultaneous encoding of multiple memories, which would not have been possible otherwise. These memories are different in an essential way from those found in other systems, such as multiple transient memories observed in sheared suspensions, and contain information about the strength of the interactions.
Collapse
Affiliation(s)
- Chloe W Lindeman
- Department of Physics and The James Franck and Enrico Fermi Institutes, University of Chicago, Chicago, IL 60637, USA.
| | - Sidney R Nagel
- Department of Physics and The James Franck and Enrico Fermi Institutes, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Keim NC, Paulsen JD. Multiperiodic orbits from interacting soft spots in cyclically sheared amorphous solids. SCIENCE ADVANCES 2021; 7:7/33/eabg7685. [PMID: 34380623 PMCID: PMC8357233 DOI: 10.1126/sciadv.abg7685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/03/2021] [Indexed: 05/06/2023]
Abstract
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of particle motions is a multiple of the period of driving, but the reasons for this behavior have remained unclear. Motivated by mesoscopic features of displacement fields in experiments on jammed solids, we propose and analyze a simple model of interacting soft spots-locations where particles rearrange under stress and that resemble two-level systems with hysteresis. We show that multiperiodic behavior can arise among just three or more soft spots that interact with each other, but in all cases it requires frustrated interactions, illuminating this otherwise elusive type of interaction. We suggest directions for seeking this signature of frustration in experiments and for achieving it in designed systems.
Collapse
Affiliation(s)
- Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Joseph D Paulsen
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Terzi MM, Mungan M. State transition graph of the Preisach model and the role of return-point memory. Phys Rev E 2020; 102:012122. [PMID: 32795063 DOI: 10.1103/physreve.102.012122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The Preisach model has been useful as a null model for understanding memory formation in periodically driven disordered systems. In amorphous solids, for example, the athermal response to shear is due to localized plastic events (soft spots). As shown recently by Mungan et al. [Phys. Rev. Lett. 123, 178002 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.178002], the plastic response to applied shear can be rigorously described in terms of a directed network whose transitions correspond to one or more soft spots changing states. The topology of this graph depends on the interactions between soft spots and when such interactions are negligible, the resulting description becomes that of the Preisach model. A first step in linking transition graph topology with the underlying soft-spot interactions is therefore to determine the structure of such graphs in the absence of interactions. Here we perform a detailed analysis of the transition graph of the Preisach model. We highlight the important role played by return-point memory in organizing the graph into a hierarchy of loops and subloops. Our analysis reveals that the topology of a large portion of this graph is actually not governed by the values of the switching fields that describe the hysteretic behavior of the individual elements but by a coarser parameter, a permutation ρ which prescribes the sequence in which the individual hysteretic elements change their states as the main hysteresis loop is traversed. This in turn allows us to derive combinatorial properties, such as the number of major loops in the transition graph as well as the number of states |R| constituting the main hysteresis loop and its nested subloops. We find that |R| is equal to the number of increasing subsequences contained in the permutation ρ.
Collapse
Affiliation(s)
- M Mert Terzi
- Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
| | - Muhittin Mungan
- Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| |
Collapse
|
12
|
Schwen EM, Ramaswamy M, Cheng CM, Jan L, Cohen I. Embedding orthogonal memories in a colloidal gel through oscillatory shear. SOFT MATTER 2020; 16:3746-3752. [PMID: 32239003 DOI: 10.1039/c9sm02222h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has recently been shown that in a broad class of disordered systems oscillatory shear training can embed memories of specific shear protocols in relevant physical parameters such as the yield strain. These shear protocols can be used to change the physical properties of the system and memories of the protocol can later be "read" out. Here we investigate shear training memories in colloidal gels, which include an attractive interaction and network structure, and discover that such systems can support memories both along and orthogonal to the training flow direction. We use oscillatory shear protocols to set and read out the yield strain memories and confocal microscopy to analyze the rearranging gel structure throughout the shear training. We find that the gel bonds remain largely isotropic in the shear-vorticity plane throughout the training process suggesting that structures formed to support shear along the training shear plane are also able to support shear along the orthogonal plane. Orthogonal memory extends the usefulness of shear memories to more applications and should apply to many other disordered systems as well.
Collapse
Affiliation(s)
- Eric M Schwen
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| | - Meera Ramaswamy
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| | | | - Linda Jan
- Xerox Corporation, Rochester, NY 14605, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|