1
|
Near-Miss Symmetric Polyhedral Cages. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Following the experimental discovery of several nearly symmetric protein cages, we define the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages made out of P-gons. We use group theory to parameterize the possible configurations and we minimize the irregularity of the P-gons numerically to construct all such polyhedral cages for P=6 to P=20 with deformation of up to 10%.
Collapse
|
2
|
Sharma M, Biela AP, Kowalczyk A, Borzęcka-Solarz K, Piette BMAG, Gaweł S, Bishop J, Kukura P, Benesch JLP, Imamura M, Scheuring S, Heddle JG. Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS NANOSCIENCE AU 2022; 2:404-413. [PMID: 36281256 PMCID: PMC9585630 DOI: 10.1021/acsnanoscienceau.2c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Artificial protein
cages are constructed from multiple protein
subunits. The interaction between the subunits, notably the angle
formed between them, controls the geometry of the resulting cage.
Here, using the artificial protein cage, “TRAP-cage”,
we show that a simple alteration in the position of a single amino
acid responsible for Au(I)-mediated subunit–subunit interactions
in the constituent ring-shaped building blocks results in a more acute
dihedral angle between them. In turn, this causes a dramatic shift
in the structure from a 24-ring cage with an octahedral symmetry to
a 20-ring cage with a C2 symmetry. This symmetry change is accompanied
by a decrease in the number of Au(I)-mediated bonds between cysteines
and a concomitant change in biophysical properties of the cage.
Collapse
Affiliation(s)
- Mohit Sharma
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Artur P. Biela
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Agnieszka Kowalczyk
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków 30-348, Poland
| | - Kinga Borzęcka-Solarz
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | | | - Szymon Gaweł
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Joshua Bishop
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Jonathan G. Heddle
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| |
Collapse
|
3
|
Majsterkiewicz K, Biela AP, Maity S, Sharma M, Piette BMAG, Kowalczyk A, Gaweł S, Chakraborti S, Roos WH, Heddle JG. Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. NANO LETTERS 2022; 22:3187-3195. [PMID: 35254086 PMCID: PMC9052746 DOI: 10.1021/acs.nanolett.1c04222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Artur P. Biela
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Institute
of Zoology and Biomedical Research, Department of Cell Biology and
Imaging, Jagiellonian University, Kraków 30-387, Poland
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Mohit Sharma
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | | | - Agnieszka Kowalczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Faculty of
Mathematics and Computer Science, Jagiellonian
University, Kraków 30-348, Poland
| | - Szymon Gaweł
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | | | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Jonathan G. Heddle
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
4
|
Piette BMAG, Kowalczyk A, Heddle JG. Characterization of near-miss connectivity-invariant homogeneous convex polyhedral cages. Proc Math Phys Eng Sci 2022; 478:20210679. [PMID: 35450023 PMCID: PMC8984814 DOI: 10.1098/rspa.2021.0679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Following the discovery of a nearly symmetric protein cage, we introduce the new mathematical concept of a near-miss polyhedral cage (p-cage) as an assembly of nearly regular polygons with holes between them. We then introduce the concept of the connectivity-invariant p-cage and show that they are related to the symmetry of uniform polyhedra. We use this relation, combined with a numerical optimization method, to characterize some classes of near-miss connectivity-invariant p-cages with a deformation below 10% and faces with up to 17 edges.
Collapse
Affiliation(s)
| | - Agnieszka Kowalczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Lojasiewicza 6, Krakow 30-348, Poland
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
| |
Collapse
|