1
|
Baheti RK, Solanki PK, Ahmed S, Baerwald A, Rabin Y. Ultrasound-based geometric modeling of the human ovary with applications to cryopreservation. Cryobiology 2024; 118:105187. [PMID: 39675501 DOI: 10.1016/j.cryobiol.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Successful cryopreservation of the whole ovary outside of the body, while a woman undergoes cancer treatments, may help preserving fertility and regaining hormone balance during recovery. One of the key challenges in whole ovary cryopreservation is adequately loading the organ with cryoprotective agents (CPAs). Another notable challenge in developing the application is the lack of geometric data needed for designing matching thermal protocols. The objective of the current study is twofold: (i) to develop an effective geometric reconstruction method for the ovary, based on transvaginal ultrasound (TVUS) data, and (ii) to perform a pilot study on the thermal effects associated with CPA loading with application to vitrification. This study includes screening of 127 TVUS imaging datasets of ovaries from healthy ovulatory participants, reconstruction of 14 geometric models, and thermally analyzing two representative geometric models of low and high mature follicles-to-organ volume ratios. Results of this study demonstrate that the proposed reconstruction method is faster and more accurate than that facilitated by commercially available software (SonoAVC, GE Healthcare). Two extremes were investigated: (1) complete vitrification of the ovary, and (2) crystallization of mature follicles while the remaining ovarian stroma vitrifies. CPA loading into the mature follicles is considered an outstanding cryopreservation challenge, but with very little impact on long-term fertility preservation. Results of this study suggest that ovarian preservation by vitrification is feasible when sufficient CPA loading is achieved, while identifying the most suitable CPA for the task remains a challenge beyond the scope of the current study.
Collapse
Affiliation(s)
- Rounak K Baheti
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Prem K Solanki
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sally Ahmed
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Angela Baerwald
- Department of Academic Family Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yoed Rabin
- Biothermal Technology Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Winstanley YE, Stables JS, Gonzalez MB, Umehara T, Norman RJ, Robker RL. Emerging therapeutic strategies to mitigate female and male reproductive aging. NATURE AGING 2024; 4:1682-1696. [PMID: 39672895 DOI: 10.1038/s43587-024-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
People today are choosing to have children later in life, often in their thirties and forties, when their fertility is in decline. We sought to identify and compile effective methods for improving either male or female fertility in this context of advanced reproductive age. We found few clinical studies with strong evidence for therapeutics that mitigate reproductive aging or extend fertility; however, this Perspective summarizes the range of emerging experimental strategies under development. Preclinical studies, in mouse models of aging, have identified pharmaceutical candidates that improve egg and sperm quality. Further, a diverse array of medically assisted reproduction methodologies, including those that stimulate rare ovarian follicles and rejuvenate egg quality using mitochondria, may have future utility for older patients. Finally, we highlight the many knowledge gaps and possible future directions in the field of therapeutics to extend the age of healthy human reproduction.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer S Stables
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School; The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Liu Z, Cui Z, Li C, Lu K, Chen K, Cui W, Wu Y, Xia D. Exposure to perfluorodecanoic acid impairs follicular development via inducing granulosa cell necroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117268. [PMID: 39547057 DOI: 10.1016/j.ecoenv.2024.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted significant attention due to their environmental toxicity. However, the detrimental impact of PFAS on the development of the female reproductive system remains controversial. In this study, we investigated the effects of three specific PFAS compounds perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) on ovarian development. Among these compounds, PFDA demonstrated the most pronounced cytotoxic effect on ovarian granulosa cells. The results showed that a 200 μM concentration of PFDA induced cell apoptosis via the intrinsic pathway by elevating reactive oxygen species (ROS) levels and activating Caspase-9 and Caspase-3. Furthermore, 200 μM PFDA triggered necroptosis, a form of regulated cell death (RCD), through the receptor-interacting serine/threonine kinase 1 (RIPK1), receptor interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL) axis, mediated by inhibition of the canonical apoptosis proteolytic enzyme Caspase-8. In vivo experiments confirmed that mice exposed to PFDA displayed a significantly reduced ovarian index compared to the control group, accompanied by evident follicular atresia. Ovarian tissues from the PFDA-exposed group showed upregulated necroptosis markers, which were effectively mitigated by inhibiting the phosphorylation of RIPK1 at Ser166. Importantly, this study provides the first evidence that PFDA disrupts ovarian development through a novel mechanism involving the RIPK1-mediated necroptosis pathway, alongside the detection of the intrinsic apoptosis pathway. This greatly expands our insight into the effects of PFDA on cell death. This finding highlights the potential public health hazards associated with PFDA exposure and emphasizes the need for further research to fully understand its broader implications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kean Lu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Ye X, Baker PN, Tong C. The updated understanding of advanced maternal age. FUNDAMENTAL RESEARCH 2024; 4:1719-1728. [PMID: 39734537 PMCID: PMC11670706 DOI: 10.1016/j.fmre.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/31/2024] Open
Abstract
The rising rates of pregnancies associated with advanced maternal age (AMA) have created unique challenges for healthcare systems worldwide. The elevated risk of poor maternal outcomes among AMA pregnancies is only partially understood and hotly debated. Specifically, AMA is associated with reduced fertility and an increased incidence of pregnancy complications. Finding a balance between global fertility policy, socioeconomic development and health care optimization ultimately depends on female fertility. Therefore, there is an urgent need to develop technologies and identify effective interventions. Support strategies should include prepregnancy screening, intervention and postpartum maintenance. Although some reviews have considered the relationship between AMA and adverse pregnancy outcomes, no previous work has comprehensively considered the long-term health effects of AMA on mothers. In this review, we will begin by presenting the current knowledge of global health issues associated with AMA and the effects of advanced age on the female reproductive system, endocrine metabolism, and placental function. We will then discuss physiological alterations, pregnancy complications, and long-term health problems caused by AMA.
Collapse
Affiliation(s)
- Xuan Ye
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Philip N. Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
7
|
Soygur B, Gaylord EA, Foecke MH, Cincotta SA, Horan TS, Wood A, Cohen PE, Laird DJ. Sustained fertility from first-wave follicle oocytes that pause their growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609995. [PMID: 39253445 PMCID: PMC11383281 DOI: 10.1101/2024.08.27.609995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve 1-4. However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring. This small subset of genetically-labeled fetal oocytes, labeled with Sycp3-CreERT2, is distinguished by earlier entry and slower dynamics of meiotic prophase I. While labeled oocytes were initially found in both primordial follicles and growing follicles of the first wave, they disappeared from primordial follicles by puberty. Unexpectedly, these first-wave labeled growing oocytes persisted throughout reproductive lifespan and contributed to offspring at a steady rate beyond 12 months of age, suggesting that follicles can pause mid-growth for extended periods then successfully resume. These results challenge the conclusion from lineage tracing of granulosa cells that first-wave follicles make a limited contribution to fertility5 and furthermore suggest that growth-paused oocytes comprise a second and previously unrecognized ovarian reserve.
Collapse
Affiliation(s)
- Bikem Soygur
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Mariko H. Foecke
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Steven A. Cincotta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tegan S. Horan
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Anna Wood
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
8
|
Geng J, Lv J, Zhang S, Ma Y, Sun Y, Du H. Kidney-tonifying formula facilitates the development and maturation of mouse preantral follicle in vitro. Am J Transl Res 2024; 16:3413-3426. [PMID: 39114693 PMCID: PMC11301477 DOI: 10.62347/qxtj9043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Kidney-tonifying formulas are frequently used in clinical practices to enhance follicular development and maturation. This research explored the impacts of the Bushen Tiaojing formula (BSTJF) on the development of mouse preantral follicles in vitro and its relationship with granulosa cells and gonadotropins. METHODS Preantral follicles were extracted from mice and cultured with or without serum from rats that were previously treated with or without BSTJF. During cultivation, the follicles were monitored for morphological changes and developmental maturation. Exhausted medium was collected every other day for the measurement of progesterone and estradiol (E2) levels by ELISA. Granulosa cells in in-vitro medium were collected on days 8, 10, and 12 and analyzed for determining the expressions of apoptosis-associated genes (Bax, Bcl-2, and Caspase-3). Propagation and apoptosis rates of collected granulosa cells were measured by CCK-8 assay and flow cytometry. RESULTS Compared with control follicles, follicles cultured with serum from BSTJF-treated rats had a higher survival rate, larger follicle diameter, higher Bcl-2 expression, and lower Bax and Caspase-3 expressions (all P ≤ 0.05). In addition, their granulosa cells presented substantially elevated proliferation (P ≤ 0.05) and a lower rate of apoptosis (P ≤ 0.05) compared with granulosa cells from control follicles. The level of E2 in the culture media of all groups increased slowly in the first 6 days. Subsequently, after formation of the antrum, the levels of E2 and progesterone were enhanced in the medium of follicles cultured with serum from BSTJF-treated rats compared with those in the media of control follicles (all P ≤ 0.05). CONCLUSION Serum from BSTJF-treated rats facilitated the in vitro development and maturation of mouse follicles by increasing the expression of anti-apoptotic gene Bcl-2, reducing the expressions of pro-apoptotic genes Bax and Caspase-3 as well as the apoptosis of granulosa cells, promoting the proliferation of granulosa cells and increasing the secretion of E2 and progesterone in the cells.
Collapse
Affiliation(s)
- Jingran Geng
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Maternity HospitalShijiazhuang, Hebei, China
| | - Jinmeng Lv
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhou, Hebei, China
| | - Shuancheng Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
| | - Yucong Ma
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| | - Ying Sun
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese MedicineShijiazhuang, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney PatternsShijiazhuang, Hebei, China
- Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive DiseaseShijiazhuang, Hebei, China
| |
Collapse
|
9
|
Balen AH, Tamblyn J, Skorupskaite K, Munro MG. A comprehensive review of the new FIGO classification of ovulatory disorders. Hum Reprod Update 2024; 30:355-382. [PMID: 38412452 DOI: 10.1093/humupd/dmae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) system for the classification of disorders of ovulation was produced 50 years ago and, by international consensus, has been updated by the International Federation of Gynecology and Obstetrics (FIGO). OBJECTIVE AND RATIONALE This review outlines in detail each component of the FIGO HyPO-P (hypothalamic, pituitary, ovarian, PCOS) classification with a concise description of each cause, and thereby provides a systematic method for diagnosis and management. SEARCH METHODS We searched the published articles in the PubMed database in the English-language literature until October 2022, containing the keywords ovulatory disorders; ovulatory dysfunction; anovulation, and each subheading in the FIGO HyPO-P classification. We did not include abstracts or conference proceedings because the data are usually difficult to assess. OUTCOMES We present the most comprehensive review of all disorders of ovulation, published systematically according to the logical FIGO classification. WIDER IMPLICATIONS Improving the diagnosis of an individual's ovulatory dysfunction will significantly impact clinical practice by enabling healthcare practitioners to make a precise diagnosis and plan appropriate management.
Collapse
Affiliation(s)
- Adam H Balen
- Leeds Centre for Reproductive Medicine, The University of Leeds, Leeds, UK
| | - Jennifer Tamblyn
- Leeds Centre for Reproductive Medicine, The University of Leeds, Leeds, UK
| | | | - Malcolm G Munro
- Department of Obstetrics and Gynecology, The University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Fischer MB, Mola G, Scheel L, Wraae KB, Rom AL, Frederiksen H, Johannsen TH, Almstrup K, Sundberg K, Hegaard HK, Juul A, Hagen CP. Cohort profile: The Copenhagen Analgesic Study-The COPANA cohort. Paediatr Perinat Epidemiol 2024; 38:370-381. [PMID: 38453250 DOI: 10.1111/ppe.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Development of the gonads during fetal life is complex and vital for adult reproductive health. Cell and animal studies have shown an alarming effect of mild analgesics on germ cells in both males and females. More than 50% of pregnant women use mild analgesics during pregnancy, which potentially could compromise the reproductive health of the next generation. OBJECTIVES We present a research protocol designed to evaluate the effect of prenatal exposure to mild analgesics and endocrine-disrupting chemicals on gonadal function in the offspring. POPULATION Healthy, singleton pregnant women and their partners. DESIGN The COPANA cohort is a prospective, observational pregnancy and birth cohort. METHODS Participants were enrolled during the first trimester of pregnancy. Information on the use of mild analgesics was collected retrospectively 3 months prior to pregnancy and prospectively every 2 weeks throughout the study. We collected extensive data on lifestyle and reproductive health. Biospecimens were collected in the first trimester (maternal and paternal urine- and blood samples), in the third trimester in conjunction with a study-specific ultrasound scan (maternal urine sample), and approximately 3 months post-partum during the infant minipuberty period (maternal and infant urine- and blood samples). A comprehensive evaluation of reproductive function in the infants during the minipuberty phase was performed, including an ultrasound scan of the testis or ovaries and uterus. PRELIMINARY RESULTS In total, 685 pregnant women and their partners were included between March 2020 and January 2022. A total of 589 infants (287 males) and their parents completed the follow-up during the minipuberty phase (December 2020-November 2022). CONCLUSIONS The Copenhagen Analgesic Study holds the potential to provide novel and comprehensive insights into the impact of early and late prenatal exposure to mild analgesics and other endocrine-disrupting chemicals on future reproductive function in the offspring.
Collapse
Affiliation(s)
- Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gylli Mola
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lone Scheel
- Department of Obstetrics, Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katrine Bak Wraae
- Department of Obstetrics, Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ane Lilleøre Rom
- The Department of Obstetrics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Research Unit of Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sundberg
- Department of Obstetrics, Center of Fetal Medicine and Pregnancy, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Kristine Hegaard
- The Department of Obstetrics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Gutzeit O, Bachar G, Iluz R, Araaf A, Nebenzahl-Sharona K, Nasatzky M, Weiner Z, Beloosesky R, Fainaru O. Hypoxia Leads to Diminished Ovarian Reserve in an Age-Dependent Manner. Gynecol Obstet Invest 2024; 89:278-283. [PMID: 38569488 DOI: 10.1159/000538315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Perinatal hypoxia causes premature activation and initiation of growth in dormant follicles, leading to diminished ovarian reserve. An indirect mechanism such as the release of stress-related hormones may influence ovarian follicle recruitment under hypoxic conditions. We wanted to determine whether hypoxic ovarian damage results from increased follicle growth and "burnout" or from increased apoptosis and whether this damage is age-dependent. DESIGN Animal study was conducted. PARTICIPANTS/MATERIALS, SETTING, METHODS Using adult 6-week-old (n = 8) and one-day-old newborn (n = 20) ICR (CD-1) female mice, ovarian follicular counts were conducted on H&E-stained sections. METHODS Immunohistochemistry was performed on sections stained with Ki-67, anti-Caspase 3, and anti-FOXO3A. RESULTS Exposure to hypoxia resulted in significantly reduced proportion of primordial follicles versus normoxia in both adult dams and newborn pups (3.17 ± 2.75 vs. 17.89 ± 4.4%; p = 0.004; 40.59 ± 14.88 vs. 81.92 ± 31.56%, p = 0.001, respectively), concomitant with increased growing-primary and secondary follicles, and more pronounced in adult dams versus newborn pups (6-fold vs. 2-fold, respectively). Ki67 staining revealed higher scores of cell proliferation in follicular granulosa cells after exposure to hypoxia than normoxia. However, Caspase 3 and Foxo3A staining did not show any differences in these markers of apoptosis in oocytes, granulosa cells, theca cells, or stromal cells when exposed to hypoxia versus normoxia. LIMITATIONS The current study has several limitations; first, the sample size for each group is relatively small, which could limit the generalizability of the findings. Second, the study used an ex vivo culture system, which may not fully capture the complex interactions that occur in the whole animal. Third, the exposure to hypoxia only lasted for 3 h, which may not be long enough to observe all the potential effects. In addition, the study only analyzed specific markers of apoptosis in a few cell types, and other cell types or apoptotic pathways might be involved. Lastly, the study provides evidence for accelerated follicular activation and decreased ovarian reserve, but the underlying mechanisms are not fully explored. CONCLUSIONS Direct tissue hypoxia led to premature activation and initiation of growth in dormant follicles leading to diminished ovarian reserve. Hypoxic damage is age-dependent, with adult ovaries more susceptible than newborn ovaries. These findings support the possibility of follicular "burn out" as a potential mechanism responsible for hypoxia-induced loss of ovarian reserve.
Collapse
Affiliation(s)
- Ola Gutzeit
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gal Bachar
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel,
| | - Roee Iluz
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alaa Araaf
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Keren Nebenzahl-Sharona
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Nasatzky
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zeev Weiner
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ron Beloosesky
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofer Fainaru
- IVF Unit, Department of Obstetrics and Gynecology, Rambam Health Care Campus, and Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Córdova-Oriz I, Polonio AM, Cuadrado-Torroglosa I, Chico-Sordo L, Medrano M, García-Velasco JA, Varela E. Chromosome ends and the theory of marginotomy: implications for reproduction. Biogerontology 2024; 25:227-248. [PMID: 37943366 DOI: 10.1007/s10522-023-10071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
13
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Mishra GD, Davies MC, Hillman S, Chung HF, Roy S, Maclaran K, Hickey M. Optimising health after early menopause. Lancet 2024; 403:958-968. [PMID: 38458215 DOI: 10.1016/s0140-6736(23)02800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2023] [Accepted: 12/11/2023] [Indexed: 03/10/2024]
Abstract
The typical age at menopause is 50-51 years in high-income countries. However, early menopause is common, with around 8% of women in high-income countries and 12% of women globally experiencing menopause between the ages of 40 years and 44 years. Menopause before age 40 years (premature ovarian insufficiency) affects an additional 2-4% of women. Both early menopause and premature ovarian insufficiency can herald an increased risk of chronic disease, including osteoporosis and cardiovascular disease. People who enter menopause at younger ages might also experience distress and feel less supported than those who reach menopause at the average age. Clinical practice guidelines are available for the diagnosis and management of premature ovarian insufficiency, but there is a gap in clinical guidance for early menopause. We argue that instead of distinct age thresholds being applied, early menopause should be seen on a spectrum between premature ovarian insufficiency and menopause at the average age. This Series paper presents evidence for the short-term and long-term consequences of early menopause. We offer a practical framework for clinicians to guide diagnosis and management of early menopause, which considers the nature and severity of symptoms, age and medical history, and the individual's wishes and priorities to optimise their quality of life and short-term and long-term health. We conclude with recommendations for future research to address key gaps in the current evidence.
Collapse
Affiliation(s)
- Gita D Mishra
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - Melanie C Davies
- Institute for Women's Health, University College London, London, UK
| | - Sarah Hillman
- Unit of Academic Primary Care, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hsin-Fang Chung
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Subho Roy
- Department of Anthropology, University of Calcutta, Kolkata, India
| | - Kate Maclaran
- Department of Gynaecology, Chelsea and Westminster Hospital, London, UK
| | - Martha Hickey
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and the Royal Women's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Chen M, Liu Y, Zuo M, Zhang M, Wang Z, Li X, Yuan D, Xu H, Yu G, Li M. Integrated analysis reveals the regulatory mechanism of the neddylation inhibitor MLN4924 on the metabolic dysregulation in rabbit granulosa cells. BMC Genomics 2024; 25:254. [PMID: 38448814 PMCID: PMC10916191 DOI: 10.1186/s12864-024-10118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Meina Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Dongdong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
16
|
Osei B, May BH, Stiefel CM, West KL, Zafar MK, Thompson MD, Bergstrom E, Leung JW, Enemark EJ, Byrd AK. Rare SNP in the HELB gene interferes with RPA interaction and cellular function of HELB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582415. [PMID: 38464108 PMCID: PMC10925333 DOI: 10.1101/2024.02.27.582415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
HELB is a human helicase involved in initiation of DNA replication, the replication stress response, and regulation of double-strand DNA break repair. rs75770066 is a rare SNP in the HELB gene that affects age at natural menopause. rs75770066 results in a D506G substitution in an acidic patch within the 1A domain of the helicase that is known to interact with RPA. We found that this amino acid change dramatically impairs the cellular function of HELB. D506G-HELB exhibits impaired interaction with RPA, which likely results in the effects of rs75770066 as this reduces recruitment of HELB to sites of DNA damage. Reduced recruitment of D506G-HELB to double-strand DNA breaks and the concomitant increase in homologous recombination likely alters the levels of meiotic recombination, which affects the viability of gametes. Because menopause occurs when oocyte levels drop below a minimum threshold, altered repair of meiotic double-stranded DNA breaks has the potential to directly affect the age at natural menopause.
Collapse
Affiliation(s)
- Bertha Osei
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Benjamin H. May
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Clara M. Stiefel
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Kirk L. West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Erik Bergstrom
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, 72205, USA
| | - Justin W. Leung
- Department of Radiation Oncology, University of Texas Health Science Center San Antonio, San Antonio, Texas, 78229, USA
| | - Eric J. Enemark
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
17
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
18
|
Liu XY, Zhang M, Gu XL, Deng YL, Liu C, Miao Y, Wu Y, Li CR, Zeng JY, Li YJ, Liu AX, Zhu JQ, Li YF, Liu CJ, Zeng Q. Urinary biomarkers of drinking-water disinfection byproducts in relation to diminished ovarian reserve risk: A case-control study from the TREE cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168729. [PMID: 38007137 DOI: 10.1016/j.scitotenv.2023.168729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Disinfection byproducts (DBPs) as ovarian toxicants have been documented in toxicological studies. However, no human studies have explored the effects of exposure to DBPs on diminished ovarian reserve (DOR). OBJECTIVE To assess whether urinary biomarkers of exposure to drinking-water DBPs were associated with DOR risk. METHODS A total of 311 women undergoing assisted reproductive technology were diagnosed with DOR in the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. The cases were matched to the controls with normal ovarian reserve function by age in a ratio of 1:1. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were quantified as biomarkers of drinking-water DBP exposures. The conditional logistic regression and restricted cubic spline (RCS) were used to explore urinary biomarkers of drinking-water DBP exposures in associations with the risk of DOR. RESULTS Elevated urinary DCAA levels were associated with higher DOR risk [adjusted odds ratio (OR) = 1.87; 95 % confidence interval (CI): 1.16, 3.03 for the highest vs. lowest quartiles; P for trend = 0.016]. The association was confirmed in the RCS model, with a linear dose-response curve (P for overall association = 0.029 and P for non-linear association = 0.708). The subgroup analysis by age and body mass index (BMI) showed that urinary DCAA in association with DOR risk was observed among women ≥35 years old and leaner women (BMI < 24 kg/m2), but the group differences were not statistically significant. Moreover, a U-shaped dose-response curve between urinary TCAA and DOR risk was estimated in the RCS model (P for overall association = 0.011 and P for non-linear association = 0.004). CONCLUSIONS Exposure to drinking-water DBPs may contribute to the risk of DOR among women undergoing assisted reproductive technology.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Li Gu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
19
|
Li C, Fu C, He T, Liu Z, Zhou J, Wu G, Liu H, Shen M. FSH preserves the viability of hypoxic granulosa cells via activating the HIF-1α-GAS6-Axl-Akt pathway. J Cell Physiol 2024; 239:e31162. [PMID: 37994152 DOI: 10.1002/jcp.31162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong He
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Zhou
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gang Wu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
21
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
22
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Verrilli L. Primary Ovarian Insufficiency and Ovarian Aging. Obstet Gynecol Clin North Am 2023; 50:653-661. [PMID: 37914485 DOI: 10.1016/j.ogc.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Primary ovarian insufficiency (POI) is a complex condition of aberrant ovarian aging. POI etiologies are varied, and most cases have no identifiable underlying cause. Caring for women with POI requires an approach that understands the importance of ovarian function in a variety of target organs and tissues.
Collapse
Affiliation(s)
- Lauren Verrilli
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Khan SA, Theunissen TW. Modeling X-chromosome inactivation and reactivation during human development. Curr Opin Genet Dev 2023; 82:102096. [PMID: 37597506 PMCID: PMC10588740 DOI: 10.1016/j.gde.2023.102096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/21/2023]
Abstract
Stem-cell-based embryo models generate much excitement as they offer a window into an early phase of human development that has remained largely inaccessible to scientific investigation. An important epigenetic phenomenon during early embryogenesis is the epigenetic silencing of one of the two X chromosomes in female embryos, which ensures an equal output of X-linked gene expression between the sexes. X-chromosome inactivation (XCI) is thought to be established within the first three weeks of human development, although the inactive X-chromosome is reactivated in primordial germ cells (PGCs) that migrate to the embryonic gonads. Here, we summarize our current understanding of X-chromosome dynamics during human development and comment on the potential of recently established stem-cell-based models to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Shafqat A Khan
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. https://twitter.com/@sakhan2019
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Chu B, Liu Z, Liu Y, Jiang H. The Role of Advanced Parental Age in Reproductive Genetics. Reprod Sci 2023; 30:2907-2919. [PMID: 37171772 PMCID: PMC10556127 DOI: 10.1007/s43032-023-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The increase of parental reproductive age is a worldwide trend in modern society in recent decades. In general, older parents have a significant impact on reproductive genetics and the health of offspring. In particular, advanced parental age contributes to the increase in the risk of adverse neurodevelopmental outcomes in offspring. However, it is currently under debate how and to what extent the health of future generations was affected by the parental age. In this review, we aimed to (i) provide an overview of the effects of age on the fertility and biology of the reproductive organs of the parents, (ii) highlight the candidate biological mechanisms underlying reproductive genetic alterations, and (iii) discuss the relevance of the effect of parental age on offspring between animal experiment and clinical observation. In addition, we think that the impact of environmental factors on cognitive and emotional development of older offspring will be an interesting direction.
Collapse
Affiliation(s)
- Boling Chu
- Department of Biobank, Suining Central Hospital, Suining, 629000, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Yihong Liu
- College of Humanities And Management, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hui Jiang
- Department of Biobank, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
28
|
Xin L, Li F, Yu H, Xiong Q, Hou Q, Meng Y. Honokiol alleviates radiation-induced premature ovarian failure via enhancing Nrf2. Am J Reprod Immunol 2023; 90:e13769. [PMID: 37766410 DOI: 10.1111/aji.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The ovary is highly sensitive to radiation, and patients receiving radiotherapy are at significant risk of premature ovarian failure (POF). This study aimed to explore the radioprotective effect of honokiol (HKL) on ionizing radiation (IR)-induced POF. METHODS Female C57BL/6 mice were administered intraperitoneally with vehicle or HKL once daily for 7 days. On day 7, the mice in the IR and HKL+IR groups were exposed to 3.2 Gy whole-body radiation for one hour after the intraperitoneal injection and sacrificed 12 or 72 h after radiation exposure. The gonadosomatic index (GSI) was calculated. Blood samples were collected for enzyme-linked immunosorbent assay (ELISA). Ovaries were harvested for histological examination, immunohistochemistry, immunofluorescence, TUNEL, western blot, and qPCR. The fertility assessment was evaluated by calculating live offspring number. RESULTS The optimum dose of HKL against radiation was 10 mg/kg via intraperitoneal injection. POF was induced 72 h after irradiation with significantly downregulated proliferating cell nuclear antigen (PCNA). The numbers of primordial and preantral follicles decreased significantly after irradiation (p < .001), whereas the number of atretic follicles increased (p < .001). The serum levels of estradiol (E2 ) and anti-Müllerian hormone (AMH) decreased to 50% of the control group after irradiation (p < .05). Moreover, the GSI after irradiation was 27% lower than in the control group (p < .05). The number of offspring in the IR group dropped by 50% compared with the control group (p < .05). HKL pretreatment protected the animals' fertility, GSI, PCNA, serum levels of E2 and AMH, and the number of primordial and preantral follicles. Significant upregulation of apoptosis-related proteins such as Pho-P53, Bax, Cyto C, C-caspase-3, C-PARP, and pyroptosis-related proteins such as Pho-NF-κB p65, NLRP3, caspase-1, IL-1β, and IL-18 was observed after irradiation, while the expression of Bcl-2 decreased. HKL pretreatment prevented these changes. After irradiation, malondialdehyde (MDA), Nrf2, and HO-1 were upregulated. HKL treatment activated the expression of Nrf2 and HO-1 and promoted the nucleus translocation of Nrf2. Furthermore, HKL did not affect ovarian reserves under physiological conditions. CONCLUSIONS HKL ameliorated IR-induced POF by inhibiting apoptosis and pyroptosis by enhancing Nrf2 expression and translocation.
Collapse
Affiliation(s)
- Lingli Xin
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qi Xiong
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuanguang Meng
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
29
|
Mizuta K, Saitou M. Key mechanisms and in vitro reconstitution of fetal oocyte development in mammals. Curr Opin Genet Dev 2023; 82:102091. [PMID: 37556984 DOI: 10.1016/j.gde.2023.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023]
Abstract
During fetal oocyte development in mammals, germ cells progress through meiotic prophase I to form primordial follicles with pregranulosa cells. The primordial follicles remain dormant until oogenesis resumes during puberty. Studies in mice have elucidated mechanisms governing oogenesis, leading to the successful induction of functional oocytes from mouse pluripotent stem cells in vitro. Based on the in vivo/in vitro knowledge in mice and the histological and transcriptomic evidence for fetal oocyte development in humans and primates, human/primate oocyte-like cells corresponding to the early stage of oocytes in vivo have been successfully induced in vitro. Here, we discuss recent advances in our understanding of the mechanisms of fetal oocyte development in mammals, as well as in in vitro oogenesis.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
30
|
Davis SR, Pinkerton J, Santoro N, Simoncini T. Menopause-Biology, consequences, supportive care, and therapeutic options. Cell 2023; 186:4038-4058. [PMID: 37678251 DOI: 10.1016/j.cell.2023.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
Menopause is the cessation of ovarian function, with loss of reproductive hormone production and irreversible loss of fertility. It is a natural part of reproductive aging. The physiology of the menopause is complex and incompletely understood. Globally, menopause occurs around the age of 49 years, with geographic and ethnic variation. The hormonal changes of the menopause transition may result in both symptoms and long-term systemic effects, predominantly adverse effects on cardiometabolic and musculoskeletal health. The most effective treatment for bothersome menopausal symptoms is evidence-based, menopausal hormone therapy (MHT), which reduces bone loss and may have cardiometabolic benefits. Evidence-based non-hormonal interventions are also available for symptom relief. Treatment should be individualized with shared decision-making. Most MHT regimens are not regulator approved for perimenopausal women. Studies that include perimenopausal women are needed to determine the efficacy and safety of treatment options. Further research is crucial to improve menopause care, along with research to guide policy and clinical practice.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Endocrinology and Diabetes, Alfred Health, Commercial Rd., Melbourne, VIC 3004, Australia.
| | - JoAnn Pinkerton
- Department of Obstetrics and Gynecology, Division of Midlife Health, The University of Virginia Health System, Charlottesville, VA, USA
| | | | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Mohammad H, S JC, Haripriya G, Maskeri D, K P, Priya P. Model of Anti-Mullerian Hormone Over Age to Predict Menopause in Polycystic Ovary Syndrome and Eumenorrheic Women: A Study on Southern Indian Population. Cureus 2023; 15:e43419. [PMID: 37706124 PMCID: PMC10496936 DOI: 10.7759/cureus.43419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Anti-mullerian hormone (AMH) is a member of the transforming growth factor β family and is a marker of ovarian reserve; it is produced by the granulosa cells of developing preantral and early antral ovarian follicles. AMH concentration decreases with increasing age. Its concentration is increased relatively in those with polycystic ovary syndrome (PCOS) than eumenorrheic women. Objectives In this research, using a model of AMH over age, the age of menopause is predicted in PCOS and eumenorrheic women. Study design The study subjects were classified into two groups. Group 1 included PCOS subjects. Group 2 included eumenorrheic women. General profiles such as age, BMI, and hormonal parameters such as AMH were measured. Based on the exponential functional dependence of AMH over age, a model was proposed, and the value of exponential constants such as log βo and β1 were calculated using least square approximation. An arbitrary value of 0.2 ng/mL for AMH was taken as a cut-off value to predict the age of menopause in both groups. Outcome measures We predicted the age of menopause using a model of AMH over age by the least square approximation technique. Results The age prediction for menopause using the least squares model of AMH over age showed that in group 1 patients with PCOS, menopause is projected to occur at around 54.7 years, while in group 2 with eumenorrheic women, it is expected to happen at approximately 45.2 years. Conclusion Data demonstrates that serum AMH concentration declines over time, and predicting the age of menopause reflects sustained reproductive life span in PCOS subjects.
Collapse
Affiliation(s)
| | - Janaki C S
- Anatomy, Bharath Medical College and Hospital, Chennai, IND
| | | | | | - Prabhu K
- Anatomy, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Padma Priya
- Microbiology, Bharath Medical College, Chennai, IND
| |
Collapse
|
32
|
Cavalcante MB, Sampaio OGM, Câmara FEA, Schneider A, de Ávila BM, Prosczek J, Masternak MM, Campos AR. Ovarian aging in humans: potential strategies for extending reproductive lifespan. GeroScience 2023; 45:2121-2133. [PMID: 36913129 PMCID: PMC10651588 DOI: 10.1007/s11357-023-00768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian reserve is a term used to estimate the total number of immature follicles present in the ovaries. Between birth and menopause, there is a progressive decrease in the number of ovarian follicles. Ovarian aging is a continuous physiological phenomenon, with menopause being the clinical mark of the end of ovarian function. Genetics, measured as family history for age at the onset of menopause, is the main determinant. However, physical activity, diet, and lifestyle are important factors that can influence the age of menopause. The low estrogen levels after natural or premature menopause increased the risk for several diseases, resulting in increased mortality risk. Besides that, the decreasing ovarian reserve is associated to reduced fertility. In women with infertility undergoing in vitro fertilization, reduced markers of ovarian reserve, including antral follicular count and anti-Mullerian hormone, are the main indicators of reduced chances of becoming pregnant. Therefore, it becomes clear that the ovarian reserve has a central role in women's life, affecting fertility early in life and overall health later in life. Based on this, the ideal strategy for delaying ovarian aging should have the following characteristics: (1) be initiated in the presence of good ovarian reserve; (2) maintained for a long period; (3) have an action on the dynamics of primordial follicles, controlling the rate of activation and atresia; and (4) safe use in pre-conception, pregnancy, and lactation. In this review, we therefore discuss some of these strategies and its feasibility for preventing a decline in the ovarian reserve.
Collapse
Affiliation(s)
- Marcelo Borges Cavalcante
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil.
| | - Olga Goiana Martins Sampaio
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil
| | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | | | - Juliane Prosczek
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
33
|
Luo YY, Jie HY, Huang KJ, Cai B, Zhou X, Liang MY, Zhou CQ, Mai QY. The dynamic expression of SOX17 in germ cells from human female foetus and adult ovaries after specification. Front Endocrinol (Lausanne) 2023; 14:1124143. [PMID: 37576970 PMCID: PMC10422046 DOI: 10.3389/fendo.2023.1124143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background SOX17 has been identified as a critical factor in specification of human primordial germ cells, but whether SOX17 regulates development of germ cells after sex differentiation is poorly understood. Methods We collected specimens of gonadal ridge from an embryo (n=1), and ovaries of foetuses (n=23) and adults (n=3). Germ cells were labelled with SOX17, VASA (classic germ cells marker), phosphohistone H3 (PHH3, mitosis marker) and synaptonemal complex protein 3 (SCP3, meiosis marker). Results SOX17 was detected in both cytoplasm and nucleus of oogonia and oocytes of primordial and primary follicles from 15 to 28 gestational weeks (GW). However, it was exclusively expressed in cytoplasm of oogonia at 7 GW, and in nucleus of oocytes in secondary follicles. Co-expression rates of SOX17 in VASA+ germ cells ranged from 81.29% to 97.81% in foetuses. Co-staining rates of SOX17 and PHH3 or SCP3 were 0%-34% and 0%-57%, respectively. Interestingly, we distinguished a subpopulation of SOX17+VASA- germ cells in fetal ovaries. These cells clustered in the cortex and could be co-stained with the mitosis marker PHH3 but not the meiosis marker SCP3. Conclusions The dynamic expression of SOX17 was detected in human female germ cells. We discovered a population of SOX17+ VASA- germ cells clustering at the cortex of ovaries. We could not find a relationship between mitosis or meiosis and SOX17 or VASA staining in germ cells. Our findings provide insight into the potential role of SOX17 involving germ cells maturation after specification, although the mechanism is unclear and needs further investigation.
Collapse
Affiliation(s)
- Ying-Yi Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, The First People’s Hospital of Foshan, Foshan, China
| | - Hui-Ying Jie
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-Jun Huang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bing Cai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming-Yi Liang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Can-Quan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
35
|
Hagen CP, Fischer MB, Mola G, Mikkelsen TB, Cleemann LH, Gravholt CH, Viuff MH, Juul A, Pedersen AT, Main KM. AMH and other markers of ovarian function in patients with Turner syndrome - a single center experience of transition from pediatric to gynecological follow up. Front Endocrinol (Lausanne) 2023; 14:1173600. [PMID: 37455919 PMCID: PMC10339808 DOI: 10.3389/fendo.2023.1173600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Turner syndrome (TS) is a chromosomal disorder that affects about 1 in 2500 female births and is characterized by the partial or complete absence of the second X chromosome. Depending on karyotype, TS is associated with primary ovarian insufficiency (POI). Approximately 50% of girls with a mosaic 45, X/46, XX karyotype may enter puberty spontaneously, but only 5-10% of women with TS achieve pregnancy without egg donation. In this review, we will evaluate the clinical use of markers of ovarian function in TS patients. Based on longitudinal studies of serum concentrations of reproductive hormones as well as ovarian morphology in healthy females and patients with TS, we will evaluate how they can be applied in a clinical setting. This is important when counseling patients and their families about future ovarian function essential for pubertal development and fertility. Furthermore, we will report on 20 years of experience of transition from pediatric to gynecological and adult endocrinological care in our center at Rigshospitalet, Copenhagen, Denmark.
Collapse
Affiliation(s)
- Casper P. Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Gylli Mola
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Theis Bech Mikkelsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Line Hartvig Cleemann
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Diabetes and Endocrine Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette H. Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynecology, The Fertility Clinic, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Katharina Maria Main
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Ikami K, Shoffner-Beck S, Tyczynska Weh M, Schnell S, Yoshida S, Diaz Miranda EA, Ko S, Lei L. Branched germline cysts and female-specific cyst fragmentation facilitate oocyte determination in mice. Proc Natl Acad Sci U S A 2023; 120:e2219683120. [PMID: 37155904 PMCID: PMC10194012 DOI: 10.1073/pnas.2219683120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During mouse gametogenesis, germ cells derived from the same progenitor are connected via intercellular bridges forming germline cysts, within which asymmetrical or symmetrical cell fate occurs in female and male germ cells, respectively. Here, we have identified branched cyst structures in mice, and investigated their formation and function in oocyte determination. In fetal female cysts, 16.8% of the germ cells are connected by three or four bridges, namely branching germ cells. These germ cells are preferentially protected from cell death and cyst fragmentation and accumulate cytoplasm and organelles from sister germ cells to become primary oocytes. Changes in cyst structure and differential cell volumes among cyst germ cells suggest that cytoplasmic transport in germline cysts is conducted in a directional manner, in which cellular content is first transported locally between peripheral germ cells and further enriched in branching germ cells, a process causing selective germ cell loss in cysts. Cyst fragmentation occurs extensively in female cysts, but not in male cysts. Male cysts in fetal and adult testes have branched cyst structures, without differential cell fates between germ cells. During fetal cyst formation, E-cadherin (E-cad) junctions between germ cells position intercellular bridges to form branched cysts. Disrupted junction formation in E-cad-depleted cysts led to an altered ratio in branched cysts. Germ cell-specific E-cad knockout resulted in reductions in primary oocyte number and oocyte size. These findings shed light on how oocyte fate is determined within mouse germline cysts.
Collapse
Affiliation(s)
- Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI48109
- Buck Institute for Research on Aging, Novato, CA94945
| | - Suzanne Shoffner-Beck
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Malgorzata Tyczynska Weh
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, Okazaki, Aichi444-8585, Japan
- Graduate Institute for Advanced Studies, Sokendai, Okazaki, Aichi444-8585, Japan
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO65211
| |
Collapse
|
37
|
Follicular Atresia, Cell Proliferation, and Anti-Mullerian Hormone in Two Neotropical Primates (Aotus nancymae and Sapajus macrocephalus). Animals (Basel) 2023; 13:ani13061051. [PMID: 36978591 PMCID: PMC10044352 DOI: 10.3390/ani13061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 03/17/2023] Open
Abstract
This study evaluated the follicular atresia, cell proliferation, and anti-Mullerian hormone action in Aotus nancymae and Sapajus macrocephalus during three sexual phases (follicular, luteal, and gestational). Follicular quantification and immunolocalization of Caspase-3 protein, B-cell lymphoma 2 (BCL-2), proliferating cell nuclear antigen (PCNA), and anti-Mullerian hormone (AMH) were performed. A significant difference in the quantification between preantral and antral follicles, with a progressive decrease in the antrals, was identified. Protein and hormonal markers varied significantly between follicle cell types (A. nancymae p = 0.001; S. macrocephalus, p = 0.002). Immunostaining in the preantral and antral follicles was present in all sexual phases; for Caspase-3, in granulosa cells, oocytes, and stroma; for BCL-2, in granulosa cells, oocytes, and theca; and for PCNA and AMH, in oocytes and granulosa cells. The immunostaining for Caspase-3 was more expressive in the preantral follicles (follicular phase, p < 0.05), while that for BCL-2 and PCNA was more expressive in the antral follicles of the follicular phase. The AMH was more expressive in the primary and antral follicles of nonpregnant females, in both the follicular and luteal phases. Our results contribute to understanding the ovarian follicular selection, recruitment, and degeneration of these species.
Collapse
|
38
|
Stovezky YR, Romanski PA, Bortoletto P, Spandorfer SD. Antimüllerian hormone is not associated with embryo ploidy in patients with and without infertility undergoing in vitro fertilization with preimplantation genetic testing. Fertil Steril 2023; 119:444-453. [PMID: 36423663 DOI: 10.1016/j.fertnstert.2022.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the association between antimüllerian hormone (AMH) and embryo ploidy rates in 2 cohorts of patients undergoing in vitro fertilization (IVF) with trophectoderm biopsy for preimplantation genetic testing for aneuploidy (PGT-A): the general population of women pursuing IVF with PGT-A (Infertile cohort) and women pursuing IVF with preimplantation genetic testing for monogenic disorders (PGT-M) owing to the risk of hereditary monogenic diseases (Non-infertile cohort). DESIGN Retrospective cohort study. SETTING Academic center. PATIENT(S) Patients undergoing their first cycle of IVF with trophectoderm biopsy and PGT-A or PGT-A and PGT-M in our center between March 2012 and June 2020. Patients of advanced maternal age according to the Bologna criteria (age ≥40 years) and patients who underwent fresh embryo transfers were excluded. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Proportion of euploid, mosaic, and aneuploid embryos per cycle. RESULT(S) "Infertile" (n = 926) and "Non-infertile" (n = 214) patients were stratified on the basis of AMH levels, with low-AMH defined as <1.1 ng/mL in accordance with the Bologna criteria. Age-adjusted regression models showed no relationship between AMH classification and proportion of euploid, mosaic, and aneuploid embryos in the Infertile or Non-infertile cohorts. In the Infertile cohort, no association between AMH classification and embryo ploidy rates was identified in a subgroup analysis of patients aged <35 years, 35-37 years, and 38-39 years. These findings persisted in a sensitivity analysis of infertile patients stratified into AMH (ng/mL) quartile categories. CONCLUSION(S) No association was found between AMH and the proportion of euploid, mosaic, or aneuploid embryos in 2 large cohorts of patients undergoing IVF with PGT-A (Infertile patients) or PGT-A and PGT-M (Non-infertile patients), suggesting that a quantitative depletion of ovarian reserve does not predict the ploidy status of the embryo cohort.
Collapse
Affiliation(s)
- Yael R Stovezky
- Weill Medical College of Cornell University, New York, New York.
| | - Phillip A Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| | - Pietro Bortoletto
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| | - Steven D Spandorfer
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
39
|
Ovarian Morphometric and Histologic Characteristics and Correlation with Clinical Factors: A Cross-Sectional Study. J Pers Med 2023; 13:jpm13020232. [PMID: 36836466 PMCID: PMC9961882 DOI: 10.3390/jpm13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Reproductive lifespan is determined by the reserve of ovarian follicles; their quality and quality determine the fertility potential at a given point in time for a particular individual. Inter-individual variations related to morphometry, laterality, medical history, demographic characteristics and ethnicity may impact ovarian histology, which however, has not been extensively studied or documented. The present cross-sectional study aims to investigate the potential association of clinical factors (age, medical and obstetric history) with ovarian morphometry and histology in females of reproductive age in the local population. The sample included 31 specimens of whole human ovaries, obtained from surgical/autopsy procedures in reproductive-aged women, processed at the Pathology Department. Morphometric characteristics were assessed, including shape, color, length, width, thickness and gross ovarian pathology. Random samples of specific dimensions were histologically examined to determine follicular counts. The results were analyzed statistically in correlation to morphometric characteristics and medical history. The majority of the patients had oval-shaped ovaries (77.8% right; 92.3% left; p = 0.368) of whitish color (38.9% right; 46.2% left; p > 0.999). Right ovaries had significantly greater length, width and volume (p-values 0.018, 0.040 and 0.050, respectively). Thickness was equivalent, as well as follicular distribution of all classes. Age correlated inversely with ovarian volume and primordial/primary follicular count on histology. Women with a caesarian-section history yielded significantly lower primordial/primary follicular counts. As estimated by ovarian histology, macroscopic and clinical factors may be significantly associated with actual ovarian reserve.
Collapse
|
40
|
Cacciottola L, Camboni A, Cernogoraz A, Donnez J, Dolmans MM. Role of apoptosis and autophagy in ovarian follicle pool decline in children and women diagnosed with benign or malignant extra-ovarian conditions. Hum Reprod 2023; 38:75-88. [PMID: 36346333 DOI: 10.1093/humrep/deac237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Which biological mechanisms are responsible for physiological ovarian reserve decline owing to aging, or pathological follicle depletion triggered by inflammation or a pro-oxidant environment throughout a woman's lifetime? SUMMARY ANSWER Ovarian follicle pool size is modulated by both apoptosis and autophagy, the first responsible for its physiological decline over time and increasing in the event of prior chemotherapy in children, and the latter playing a major role in physiological ovarian follicle pool diminution before puberty. WHAT IS KNOWN ALREADY Among the different pathways of controlled cell death, apoptosis and autophagy are implicated in follicle loss. Apoptosis participates in eliminating damaged follicles, such as those impaired by chemotherapy (CHT), but its involvement in physiological age-related follicle decline is less well understood. Autophagy has proved crucial in follicle quiescence maintenance in murine models, but its contribution to human follicle pool modulation is still unclear. STUDY DESIGN, SIZE, DURATION This retrospective study included 84 patients with benign or malignant extra-ovarian conditions aged between 1 and 35 years, with ovarian tissue stored for histological analyses at the time of cryopreservation (between 2012 and 2021) at a tertiary care center. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; cleaved caspase-3 immunostaining to identify follicle apoptosis; and microtubule-associated proteins 1A/1B light chain 3B immunolabeling to detect follicle autophagy. Transmission electron microscopy was also carried out to investigate ultrastructural features of oocytes and granulosa cells. All analyses stratified patients by age, menarchal status (premenarchal = 32; postmenarchal = 52), potentially gonadotoxic CHT before cryopreservation (n = 14), presence of endometriosis and use of hormonal treatment. MAIN RESULTS AND THE ROLE OF CHANCE Premenarchal patients had a larger follicle pool in terms of total follicle density [mean, range 4979.98 (342.2-21789) versus 918.8 (26.18-3983), P < 0.001], but higher rates of morphologically abnormal [8.52 (0-25.37)% versus 3.54 (0-17.5)%, P < 0.001] and atretic [15.8 (0‒31.85)% versus 10.6 (0-33.33)%, P < 0.01] follicles than postmenarchal subjects. Apoptosis rates did not change with increasing age [27.94 (0-93.2)% in prepubertal subjects and 29.5 (0-100)% in postpubertal subjects], but autophagic follicles were around 10 times more common in premenarchal than postmenarchal subjects [10.21 (0-62.3)% versus 1.34 (0-25)%, P < 0.001], playing a crucial role in age-related follicle decline and elimination of 'abnormal' follicles, that are rarely seen after menarche. The impact of diagnosis and previous CHT varied according to age. In premenarchal patients with previous CHT, significantly more apoptotic [40.22 (0-100)% versus 26.79 (0-87)%, P < 0.05] and fewer abnormal [3.84 (0-10-76)% versus 9.83 (0-25.37)%, P < 0.01] follicles were detected than in subjects with no CHT prior to ovarian tissue cryopreservation, suggesting a direct effect on follicle elimination, especially of those with abnormalities. In postmenarchal subjects with previous CHT, quiescent follicle rates were lower than in patients with no CHT before tissue freezing [71.57 (0-100)% versus 85.89 (50-100)%, P < 0.05], suggesting accelerated follicle activation and growth. Moreover, increased autophagic activity was observed in the event of a cancer diagnosis compared to benign conditions after puberty [26.27 (0-100)% versus 9.48 (0-29.41)%, respectively, P < 0.05]. LIMITATIONS, REASONS FOR CAUTION The impact of specific CHT protocols could not be investigated since the group of patients with previous CHT was highly heterogeneous. WIDER IMPLICATIONS OF THE FINDINGS This study yields a deeper understanding of regulation of the follicle pool decline, showing for the first time that both apoptosis and autophagy pathways are involved in physiological follicle depletion, the latter being crucial before puberty. Moreover, our data showed a different response to non-physiological damage according to age, with higher apoptosis rates only in premenarchal subjects with previous CHT, confirming that this pathway is activated by drugs known to induce DNA damage in oocytes, such as alkylating agents, but not by cancer itself. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (F.R.S.-FNRS/FRIA FC29657 awarded to L.C., CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.), grants from the Fondation contre le Cancer (grant 2018-042 awarded to A.Ca.), the Fondazione Comunitaria del Varesotto and Provincia di Varese ('Amalia Griffini' Fellowship in Gynecology and Obstetrics awarded to A.Ce.), Fonds Spéciaux de Recherche, Fondation St Luc and donations from the Ferrero family. The authors have no competing interests to declare. TRIAL REGISTRAION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - A Camboni
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Anatomopathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - A Cernogoraz
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology and Obstetrics, F. Del Ponte Hospital, University of Insubria, Varese, Italy
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium.,Professor EM, Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
41
|
Overland MR, Li Y, Derpinghaus A, Aksel S, Cao M, Ladwig N, Cunha GR, Himelreich-Perić M, Baskin LS. Development of the human ovary: Fetal through pubertal ovarian morphology, folliculogenesis and expression of cellular differentiation markers. Differentiation 2023; 129:37-59. [PMID: 36347737 DOI: 10.1016/j.diff.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
A definition of normal human fetal and early postnatal ovarian development is critical to the ability to accurately diagnose the presence or absence of functional ovarian tissue in clinical specimens. Through assembling an extensive histologic and immunohistochemical developmental ontogeny of human ovarian specimens from 8 weeks of gestation through 16 years of postnatal, we present a comprehensive immunohistochemical mapping of normal protein expression patterns in the early fetal through post-pubertal human ovary and detail a specific expression-based definition of the early stages of follicular development. Normal fetal and postnatal ovarian tissue is defined by the presence of follicular structures and characteristic immunohistochemical staining patterns, including granulosa cells expressing Forkhead Box Protein L2 (FOXL2). However, the current standard array of immunohistochemical markers poorly defines ovarian stromal tissue, and additional work is needed to identify new markers to advance our ability to accurately identify ovarian stromal components in gonadal specimens from patients with disorders of sexual differentiation.
Collapse
Affiliation(s)
- Maya R Overland
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sena Aksel
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Nicholas Ladwig
- Department of Pathology, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
42
|
Kelsey T. Models and Biomarkers for Ovarian Ageing. Subcell Biochem 2023; 103:185-199. [PMID: 37120469 DOI: 10.1007/978-3-031-26576-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The human ovarian reserve is defined by the number of non-growing follicles (NGFs) in the ovary, with the age-related decline in NGF population determining age at menopause for healthy women. In this chapter, the concept of ovarian reserve is explored in detail, with a sequence of models described that in principle allow any individual to be compared to the general population. As there is no current technology that can count the NGFs in a living ovary, we move our focus to biomarkers for the ovarian reserve. Using serum analysis and ultrasound it is possible to measure anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), and ovarian volume (OV) and to count numbers of antral follicles (AFC). These are compared, with ovarian volume being the closest to a true biomarker for a wide range of ages and with AMH and AFC being the most popular for post-pubertal and pre-menopausal ages. The study of genetic and subcellular biomarkers for the ovarian reserve has produced less concrete results. Recent advances are described and compared in terms of limitations and potential. The chapter concludes with an overview of the future study indicated by our current knowledge and by current controversy in the field.
Collapse
Affiliation(s)
- Tom Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK.
| |
Collapse
|
43
|
Zhang J, Wang C, Jia C, Zhang Y, Qing X, Zhang Y, Liu J, Xu S, Pan Z. The Role of Circular RNAs in the Physiology and Pathology of the Mammalian Ovary. Int J Mol Sci 2022; 23:15204. [PMID: 36499522 PMCID: PMC9737273 DOI: 10.3390/ijms232315204] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs (ncRNAs) generated from exonic, intronic, or untranslated regions of protein-coding genes or intergenic regions. The diverse, stable, and specific expression patterns of circRNAs and their possible functions through cis/trans regulation and protein-coding mechanisms make circRNA a research hotspot in various biological and pathological processes. It also shows practical value as biomarkers, diagnostic indicators, and therapeutic targets. This review summarized the characteristics, classification, biogenesis and elimination, detection and confirmation, and functions of circRNAs. We focused on research advances circRNAs in the mammalian ovary under conditions including ovarian cancer, polycystic ovarian syndrome (PCOS), and maternal aging, as well as during reproductive status, including ovarian follicle development and atresia. The roles of circRNAs in high reproductive traits in domestic animals were also summarized. Finally, we outlined some obstructive factors and prospects to work with circRNA, aiming to provide insights into the functional research interests of circRNAs in the reproduction and gynecology areas.
Collapse
Affiliation(s)
- Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Caixia Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Qing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuge Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
de Groen PC. Muons, mutations, and planetary shielding. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2022; 9:1067491. [PMID: 36688079 PMCID: PMC9854335 DOI: 10.3389/fspas.2022.1067491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Life on earth is protected from astrophysical cosmic rays by the heliospheric magnetic and slowly varying geomagnetic fields, and by collisions with oxygen and nitrogen molecules in the atmosphere. The collisions generate showers of particles of lesser energy; only muons, a charged particle with a mass between that of an electron and a proton, can reach earth's surface in substantial quantities. Muons are easily detected, used to image interior spaces of pyramids, and known to limit the stability of qubits in quantum computing; yet, despite their charge, average energy of 4 GeV and ionizing properties, muons are not considered to affect chemical reactions or biology. In this Perspective the potential damaging effects of muons on DNA, and hence the repercussions for evolution and disease, are examined. It is argued here that the effect of muons on life through DNA mutations should be considered when investigating the protection provided by the magnetic environment and atmosphere from cosmic rays on earth and exoplanets.
Collapse
|
45
|
Bowolaksono A, Sundari AM, Fauzi M, Maidarti M, Wiweko B, Mutia K, Iffanolida PA, Febri RR, Dwiranti A, Funahashi H. Anti-Müllerian hormone independently affect mtDNA copy number in human granulosa cells. J Ovarian Res 2022; 15:111. [PMID: 36224631 PMCID: PMC9558397 DOI: 10.1186/s13048-022-01047-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, as a delayed childbearing trend is emerging in modern women's adulthood, diminished reproductive potential due to age-related changes is more prevalent. Reduction in the abundance of mitochondrial DNA (mtDNA) copies and circulating anti-Müllerian hormone (AMH) have been separately reported with aging, contributing to the decrease in successful reproduction. However, there are limited reports on the impact of age on mtDNA and AMH in the same individual and whether mtDNA copy numbers are influenced by age and AMH. METHODS In the present study, we utilized a real-time quantitative PCR (RT-qPCR) to quantify the mtDNA copy number of granulosa cells obtained from 43 women undergoing an in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) program. RESULTS According to our analysis, a significant correlation was observed between age and mtDNA copy number (r = -0.54, P < 0.001) and between age and AMH level (r = -0.48, P < 0.001) of the same individual. There was also a positive correlation between mtDNA copy number and AMH (r = 0.88, P < 0.001) with AMH level falling as mtDNA decreases. In our regression, age and AMH were shown to have low collinearity (VIF = 1.297) but only AMH was correlated with mtDNA quantity (P < 0.001). CONCLUSION Our study suggests that both mtDNA and AMH abundance are influenced by age and that AMH levels independently affect mtDNA copy number regardless of age. Further research is required to understand the role of AMH on mitochondria bioenergetics.
Collapse
Affiliation(s)
- Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus FMIPA UI, 16424, Depok, Indonesia.
| | - Ayu Mulia Sundari
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus FMIPA UI, 16424, Depok, Indonesia.,Indonesian Reproductive Science Institute (IRSI) Research and Training Center, Jakarta, Indonesia
| | - Muhammad Fauzi
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus FMIPA UI, 16424, Depok, Indonesia.,Department of Diabetes, Endocrinology, and Clinical Nutrition, Graduates School of Medicine, Kyoto University, Kyoto, Japan
| | - Mila Maidarti
- Human Reproductive, Infertility, and Family Planning (HRIFP) Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Budi Wiweko
- Human Reproductive, Infertility, and Family Planning (HRIFP) Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kresna Mutia
- Human Reproductive, Infertility, and Family Planning (HRIFP) Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Pritta Ameilia Iffanolida
- Human Reproductive, Infertility, and Family Planning (HRIFP) Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ririn Rahmala Febri
- Human Reproductive, Infertility, and Family Planning (HRIFP) Research Center, Indonesian Medical Education and Research Institutes, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus FMIPA UI, 16424, Depok, Indonesia
| | - Hiroaki Funahashi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-ku, 700-8530, Okayama, Japan
| |
Collapse
|
46
|
O. Amarin Z. The Quantum Theory of Reproduction – How Unique is an Individual? Stud Fam Plann 2022. [DOI: 10.5772/intechopen.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our understanding of nature’s way is founded on quantum mechanics. In its existence of over 80 years, quantum theory has been describing the physical world. The attraction of studying quantum mechanics is the perception of the conceptual structure of nature. This is aided by the mathematical structure that exposes the internal logic of the subject by inventing a notation that embeds the philosophy of the question. To describe how unique each individual is. A calculation method was applied. The uniqueness of an individual is one in two nonillion, octillion, septillion, sextillion, quintillion, quadrillion, trillion, billion, million and thousand. Individuals are indefinitely unique.
Collapse
|
47
|
Abstract
Metazoans function as individual organisms but also as “colonies” of cells whose single-celled ancestors lived and reproduced independently. Insights from evolutionary biology about multicellular group formation help us understand the behavior of cells: why they cooperate, and why cooperation sometimes breaks down. Current explanations for multicellularity focus on two aspects of development which promote cooperation and limit conflict among cells: a single-cell bottleneck, which creates organisms composed of clones, and a separation of somatic and germ cell lineages, which reduces the selective advantage of cheating. However, many obligately multicellular organisms thrive with neither, creating the potential for within-organism conflict. Here, we argue that the prevalence of such organisms throughout the Metazoa requires us to refine our preconceptions of conflict-free multicellularity. Evolutionary theory must incorporate developmental mechanisms across a broad range of organisms—such as unusual reproductive strategies, totipotency, and cell competition—while developmental biology must incorporate evolutionary principles. To facilitate this cross-disciplinary approach, we provide a conceptual overview from evolutionary biology for developmental biologists, using analogous examples in the well-studied social insects.
Collapse
|
48
|
Mizuta K, Katou Y, Nakakita B, Kishine A, Nosaka Y, Saito S, Iwatani C, Tsuchiya H, Kawamoto I, Nakaya M, Tsukiyama T, Nagano M, Kojima Y, Nakamura T, Yabuta Y, Horie A, Mandai M, Ohta H, Saitou M. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. EMBO J 2022; 41:e110815. [PMID: 35912849 PMCID: PMC9475534 DOI: 10.15252/embj.2022110815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Baku Nakakita
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Kishine
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Saki Saito
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masataka Nakaya
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kojima
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Mouse oocytes carrying metacentric Robertsonian chromosomes have fewer crossover sites and higher aneuploidy rates than oocytes carrying acrocentric chromosomes alone. Sci Rep 2022; 12:12028. [PMID: 35835815 PMCID: PMC9283534 DOI: 10.1038/s41598-022-16175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Meiotic homologous recombination during fetal development dictates proper chromosome segregation in adult mammalian oocytes. Successful homologous synapsis and recombination during Meiotic Prophase I (MPI) depends on telomere-led chromosome movement along the nuclear envelope. In mice, all chromosomes are acrocentric, while other mammalian species carry a mixture of acrocentric and metacentric chromosomes. Such differences in telomeric structures may explain the exceptionally low aneuploidy rates in mice. Here, we tested whether the presence of metacentric chromosomes carrying Robertsonian translocations (RbT) affects the rate of homologous recombination or aneuploidy. We found a delay in MPI progression in RbT-carrier vs. wild-type (WT) fetal ovaries. Furthermore, resolution of distal telomere clusters, associated with synapsis initiation, was delayed and centromeric telomere clusters persisted until later MPI substages in RbT-carrier oocytes compared to WT oocytes. When chromosomes fully synapsed, higher percentages of RbT-carrier oocytes harbored at least one chromosome pair lacking MLH1 foci, which indicate crossover sites, compared to WT oocytes. Aneuploidy rates in ovulated eggs were also higher in RbT-carrier females than in WT females. In conclusion, the presence of metacentric chromosomes among acrocentric chromosomes in mouse oocytes delays MPI progression and reduces the efficiency of homologous crossover, resulting in a higher frequency of aneuploidy.
Collapse
|
50
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|