1
|
Sansegundo E, Tourmente M, Roldan ERS. Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells 2022; 11:220. [PMID: 35053337 PMCID: PMC8773617 DOI: 10.3390/cells11020220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Mammalian sperm differ widely in sperm morphology, and several explanations have been presented to account for this diversity. Less is known about variation in sperm physiology and cellular processes that can give sperm cells an advantage when competing to fertilize oocytes. Capacitation of spermatozoa, a process essential for mammalian fertilization, correlates with changes in motility that result in a characteristic swimming pattern known as hyperactivation. Previous studies revealed that sperm motility and velocity depend on the amount of ATP available and, therefore, changes in sperm movement occurring during capacitation and hyperactivation may involve changes in sperm bioenergetics. Here, we examine differences in ATP levels of sperm from three mouse species (genus Mus), differing in sperm competition levels, incubated under non-capacitating and capacitating conditions, to analyse relationships between energetics, capacitation, and swimming patterns. We found that, in general terms, the amount of sperm ATP decreased more rapidly under capacitating conditions. This descent was related to the development of a hyperactivated pattern of movement in two species (M. musculus and M. spicilegus) but not in the other (M. spretus), suggesting that, in the latter, temporal dynamics and energetic demands of capacitation and hyperactivation may be decoupled or that the hyperactivation pattern differs. The decrease in ATP levels during capacitation was steeper in species with higher levels of sperm competition than in those with lower levels. Our results suggest that, during capacitation, sperm consume more ATP than under non-capacitating conditions. This higher ATP consumption may be linked to higher velocity and lateral head displacement, which are associated with hyperactivated motility.
Collapse
Affiliation(s)
- Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
2
|
Firman RC. Exposure to high male density causes maternal stress and female-biased sex ratios in a mammal. Proc Biol Sci 2020; 287:20192909. [PMID: 32370673 PMCID: PMC7282911 DOI: 10.1098/rspb.2019.2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
A shift from the traditional perspective that maternal stress is invariably costly has instigated recent interest into its adaptive role in offspring sex allocation. Stress generated by social instability has been linked to offspring sex ratio biases that favour the production of female offspring, which converges with the theoretical prediction that mothers in the poor condition are better off investing in daughters rather than sons. However, previous research has failed to disentangle two different processes: the passive consequence of maternal stress on sex-specific mortality and the adaptive effect of maternal stress at the time of conception. Here, I show that exposure to high male density social conditions leads to elevated stress hormone levels and female-biased in utero offspring sex ratios in house mice (Mus musculus domesticus), and identify that sex-specific offspring production-not sex-specific mortality-is the mechanism accounting for these sex ratio skews. This outcome reflects the optimal fitness scenario for mothers in a male-dominated environment: the production of daughters, who are guaranteed high mate availability, minimizes male-male competition for their sons. Overall, this study supports the idea that maternal stress has the potential to be adaptive and advances our understanding of how exposure to different social conditions can influence sex allocation in mammals.
Collapse
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| |
Collapse
|
3
|
Lavoie MD, Tedeschi JN, Garcia‐Gonzalez F, Firman RC. Exposure to male-dominated environments during development influences sperm sex ratios at sexual maturity. Evol Lett 2019; 3:392-402. [PMID: 31388448 PMCID: PMC6675145 DOI: 10.1002/evl3.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
Different stages during development are important when it comes to phenotypic adjustments in response to external stimuli. Critical stages in mammals are the prenatal phase, where embryos are exposed to a milieu of sex steroid hormones, and the early-postnatal phase, where littermates interact and experience their incipient social environment. Further, the postmaternal environment will influence the development of traits that are linked to reproductive success in adulthood. Accumulated evidence of male-driven sex allocation establishes the currently untested hypothesis that the sperm sex ratio is a plastic trait that can be mediated to align with prevailing social conditions. Here, we used natural variation in the maternal environment and experimentally manipulated the postmaternal environment to identify the importance of these developmental phases on sperm sex ratio adjustments in wild house mice (Mus musculus domesticus). We found that male density in both environments was predictive of sperm sex ratios at sexual maturity: males from more male-biased litters and males maturing under high male density produced elevated levels of Y-chromosome-bearing sperm. Our findings indicate that the sperm sex ratio is a variable phenotypic trait that responds to the external environment, and highlight the potential that these adjustments function as a mechanism of male-driven sex allocation.
Collapse
Affiliation(s)
- Misha D. Lavoie
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| | - Jamie N. Tedeschi
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| | - Francisco Garcia‐Gonzalez
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
- Estacion Biológica de DoñanaCSICSevillaSpain
| | - Renée C. Firman
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
4
|
Lehtonen J, Dardare L. Mathematical Models of Fertilization—An Eco-Evolutionary Perspective. THE QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bose APH, Henshaw JM, Zimmermann H, Fritzsche K, Sefc KM. Inclusive fitness benefits mitigate costs of cuckoldry to socially paired males. BMC Biol 2019; 17:2. [PMID: 30700283 PMCID: PMC6354359 DOI: 10.1186/s12915-018-0620-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
Background In socially monogamous species, reproduction is not always confined to paired males and females. Extra-pair males commonly also reproduce with paired females, which is traditionally thought to be costly to the females’ social partners. However, we suggest that when the relatedness between reproducing individuals is considered, cuckolded males can suffer lower fitness losses than otherwise expected, especially when the rate of cuckoldry is high. We combine theoretical modeling with a detailed genetic study on a socially monogamous wild fish, Variabilichromis moorii, which displays biparental care despite exceptionally high rates of extra-pair paternity. Results We measured the relatedness between all parties involved in V. moorii spawning events (i.e. between males and females in social pairs, females and their extra-pair partners, and paired males and their cuckolders), and we reveal that males are on average more related to their cuckolders than expected by chance. Queller–Goodnight estimates of relatedness between males and their cuckolders are on average r = 0.038 but can range up to r = 0.64. This also increases the relatedness between males and the extra-pair offspring under their care. These intriguing results are consistent with the predictions of our mathematical model, which shows that elevated relatedness between paired males and their cuckolders can be adaptive for both parties when competition for fertilizations is strong. Conclusions Our results show how cuckoldry by relatives can offset males’ direct fitness losses with inclusive fitness gains, which can be substantial in systems where males face almost certain paternity losses. Electronic supplementary material The online version of this article (10.1186/s12915-018-0620-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Jonathan M Henshaw
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Holger Zimmermann
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Karoline Fritzsche
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
6
|
Fisher HS, Hook KA, Weber WD, Hoekstra HE. Sibling rivalry: Males with more brothers develop larger testes. Ecol Evol 2018; 8:8197-8203. [PMID: 30250695 PMCID: PMC6145022 DOI: 10.1002/ece3.4337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 11/30/2022] Open
Abstract
When females mate with multiple partners in a reproductive cycle, the relative number of competing sperm from rival males is often the most critical factor in determining paternity. Gamete production is directly related to testis size in most species, and is associated with both mating behavior and perceived risk of competition. Deer mice, Peromyscus maniculatus, are naturally promiscuous and males invest significantly more in sperm production than males of P. polionotus, their monogamous sister-species. Here, we show that the larger testes in P. maniculatus are retained after decades of enforced monogamy in captivity. While these results suggest that differences in sperm production between species with divergent evolutionary histories can be maintained in captivity, we also show that the early rearing environment of males can strongly influence their testis size as adults. Using a second-generation hybrid population to increase variation within the population, we show that males reared in litters with more brothers develop larger testes as adults. Importantly, this difference in testis size is also associated with increased fertility. Together, our findings suggest that sperm production may be both broadly shaped by natural selection over evolutionary timescales and also finely tuned during early development.
Collapse
Affiliation(s)
- Heidi S. Fisher
- Department of BiologyUniversity of MarylandCollege ParkMaryland
- Department of Organismic and Evolutionary BiologyDepartment of Molecular and Cellular BiologyMuseum of Comparative ZoologyHoward Hughes Medical InstituteHarvard UniversityCambridgeMassachusetts
| | - Kristin A. Hook
- Department of BiologyUniversity of MarylandCollege ParkMaryland
| | - W. David Weber
- Department of BiologyUniversity of MarylandCollege ParkMaryland
| | - Hopi E. Hoekstra
- Department of Organismic and Evolutionary BiologyDepartment of Molecular and Cellular BiologyMuseum of Comparative ZoologyHoward Hughes Medical InstituteHarvard UniversityCambridgeMassachusetts
| |
Collapse
|
7
|
Parker GA, Ramm SA, Lehtonen J, Henshaw JM. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates. Biol Rev Camb Philos Soc 2017; 93:693-753. [PMID: 28921784 DOI: 10.1111/brv.12363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023]
Abstract
Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 2601, Canberra, Australia.,Institute of Zoology, University of Graz, Graz, 8010, Austria
| |
Collapse
|
8
|
Rosher C, Favati A, Dean R, Løvlie H. Relatedness and age reduce aggressive male interactions over mating in domestic fowl. Behav Ecol 2017. [DOI: 10.1093/beheco/arx024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Tan CKW, Doyle P, Bagshaw E, Richardson DS, Wigby S, Pizzari T. The contrasting role of male relatedness in different mechanisms of sexual selection in red junglefowl. Evolution 2017; 71:403-420. [PMID: 27925168 PMCID: PMC5324671 DOI: 10.1111/evo.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022]
Abstract
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within-group male relatedness across pre- and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more-rather than fewer-sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade-offs between male investment in pre- versus postcopulatory competition, differences in the relative relatedness of pre- versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within-group male relatedness may have contrasting effects in different mechanisms of sexual selection.
Collapse
Affiliation(s)
- Cedric Kai Wei Tan
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordOX1 3PSUnited Kingdom
| | - Philippa Doyle
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordOX1 3PSUnited Kingdom
| | - Emma Bagshaw
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordOX1 3PSUnited Kingdom
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Stuart Wigby
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordOX1 3PSUnited Kingdom
| | - Tommaso Pizzari
- Department of ZoologyEdward Grey Institute, University of OxfordOxfordOX1 3PSUnited Kingdom
| |
Collapse
|
10
|
Multilevel Selection in Kin Selection Language. Trends Ecol Evol 2016; 31:752-762. [PMID: 27590987 DOI: 10.1016/j.tree.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022]
Abstract
Few issues have raised more debate among evolutionary biologists than kin selection (KS) versus multilevel selection (MLS). They are formally equivalent, but use different-looking mathematical approaches, and are not causally equivalent: for a given problem KS can be a more suitable causal explanation than MLS, and vice versa. Methods for analyzing a given model from both viewpoints would therefore be valuable. I argue that there is often an easy way to achieve this: MLS can be written using the components of KS. This applies to the very general regression approach as well as to the practical evolutionarily stable strategy (ESS) maximization approach, and can hence be used to analyze many common ESS models from a multilevel perspective. I demonstrate this with example models of gamete competition and limitation.
Collapse
|
11
|
Firman RC, Simmons LW. Gametic interactions promote inbreeding avoidance in house mice. Ecol Lett 2015; 18:937-43. [DOI: 10.1111/ele.12471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology; School of Animal Biology; M092; The University of Western Australia; Nedlands WA 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology; M092; The University of Western Australia; Nedlands WA 6009 Australia
| |
Collapse
|
12
|
Pizzari T, Biernaskie JM, Carazo P. Inclusive fitness and sexual conflict: how population structure can modulate the battle of the sexes. Bioessays 2014; 37:155-66. [PMID: 25389109 DOI: 10.1002/bies.201400130] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Competition over reproductive opportunities among members of one sex often harms the opposite sex, creating a conflict of interest between individual males and females. Recently, this battle of the sexes has become a paradigm in the study of intersexual coevolution. Here, we review recent theoretical and empirical advances suggesting that - as in any scenario of intraspecific competition - selfishness (competitiveness) can be influenced by the genetic relatedness of competitors. When competitors are positively related (e.g. siblings), an individual may refrain from harming its competitor(s) and their mate(s) because this can improve the focal individual's inclusive fitness. These findings reveal that population genetic structure might be of paramount importance when studying the battle of the sexes. We conclude by identifying some new lines of research at the interface of sexual selection and social evolution.
Collapse
Affiliation(s)
- Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
13
|
Klemme I, Ala-Honkola O. Relatedness Does not Affect Competitive Behavior of Rival Males or Offspring Growth in Multiply Sired Litters of Bank Voles (Myodes glareolus). Ethology 2014. [DOI: 10.1111/eth.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ines Klemme
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Outi Ala-Honkola
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
14
|
Ramm SA, Stockley P. Male house mice do not adjust sperm allocation in response to odours from related or unrelated rivals. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|
16
|
Abstract
Previous studies of the cricket Teleogryllus oceanicus have shown a paternity bias towards non-sibling males. Although non-kin-biased paternity could represent a mechanism of postcopulatory inbreeding avoidance by females, evolutionarily stable strategy (ESS) models of ejaculate evolution also predict that males should reduce their expenditure on the ejaculate when mating with their sisters. Here we provide a test of these models, finding that male crickets invest equally in matings with full-siblings, half-siblings and non-sibling females. The data suggest that in this species, males and females differ in their response to inbreeding.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
17
|
Thomas ML, Simmons LW. Rival male relatedness does not affect ejaculate allocation as predicted by sperm competition theory. PLoS One 2008; 3:e2151. [PMID: 18478102 PMCID: PMC2364655 DOI: 10.1371/journal.pone.0002151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 03/20/2008] [Indexed: 11/21/2022] Open
Abstract
When females are sexually promiscuous, the intensity of sperm competition for males depends on how many partners females mate with. To maximize fitness, males should adjust their copulatory investment in relation to this intensity. However, fitness costs associated with sperm competition may not only depend on how many males a female has mated with, but also how related rival males are. According to theoretical predictions, males should adjust their copulatory investment in response to the relatedness of their male rival, and transfer more sperm to females that have first mated with a non-sibling male than females that have mated to a related male. Here, for the first time, we empirically test this theory using the Australian field cricket Teleogryllus oceanicus. We expose male crickets to sperm competition from either a full sibling or non-sibling male, by using both the presence of a rival male and the rival male's actual competing ejaculate as cues. Contrary to predictions, we find that males do not adjust ejaculates in response to the relatedness of their male rival. Instead, males with both full-sibling and non-sibling rivals allocate sperm of similar quality to females. This lack of kin biased behaviour is independent of any potentially confounding effect of strong competition between close relatives; kin biased behaviour was absent irrespective of whether males were raised in full sibling or mixed relatedness groups.
Collapse
Affiliation(s)
- Melissa L Thomas
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
18
|
Thomas ML, Simmons LW. Cuticular hydrocarbons are heritable in the cricket Teleogryllus oceanicus. J Evol Biol 2008; 21:801-6. [PMID: 18355187 DOI: 10.1111/j.1420-9101.2008.01514.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of individuals to respond differentially to conspecifics depending on their genetic relatedness is a widespread phenomenon across the animal kingdom. Despite this, little is known about the selection processes that act on the phenotypic variation of traits used during recognition. Here we use a quantitative genetic approach to examine the patterns of genetic variation in cuticular hydrocarbon (CHC) profiles, a pheromonal system used extensively in insect communication. Using gas chromatography, we found family specificity in the CHC profiles of male crickets, Teleogryllus oceanicus. Across CHC peaks, our mean coefficient of additive genetic variation was 10.8%. Multivariate principal component analysis showed that most axes of variation were weighted by CHC peaks with significant additive genetic variation. Our results provide evidence that variation in CHC profiles can reflect genetic relatedness, supporting the widely held belief that this phenotypic trait is used as a mechanism for chemosensory kin recognition.
Collapse
Affiliation(s)
- M L Thomas
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
19
|
Marshall DJ, Bolton TF. Sperm release strategies in marine broadcast spawners: the costs of releasing sperm quickly. ACTA ACUST UNITED AC 2008; 210:3720-7. [PMID: 17951412 DOI: 10.1242/jeb.008417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When under competition for fertilisations, males are thought to increase their reproductive success by releasing as many sperm as possible into the reproductive arena and in many species, this prediction holds. For marine invertebrates, which utilise the ancestral strategy of broadcast spawning eggs and sperm, however, it appears that males tend to release their sperm more slowly than females release their eggs. Marine invertebrate eggs typically have a relatively slow permanent block to polyspermy (whereby eggs become impermeable to further sperm attachment), and for several minutes after fertilisation, sperm can continue to attach to a fertilised egg. We hypothesised that releasing sperm slowly minimises the 'wastage' of sperm on already fertilised eggs. We simulated different sperm release rates in a flume using the broadcast spawning polychaete, Galeolaria caespitosa. Sperm release rates strongly affected overall fertilisation success: higher release rates resulted in lower fertilisation rates. Laboratory studies confirmed that the 'permanent' block to polyspermy in G. caespitosa took less than a minute to form but this lag was sufficient to result in some sperm wastage. Thus upstream, fertilised eggs that have not formed a permanent block to polyspermy can remove sperm from the pool that would otherwise fertilise downstream sibling eggs. We suggest that while electrical blocks to polyspermy evolved in response to excess sperm, permanent blocks to polyspermy could have evolved in response to sperm limitation (insufficient sperm).
Collapse
Affiliation(s)
- Dustin J Marshall
- School of Integrative Biology/Centre for Marine Studies, University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|
20
|
Cameron E, Day T, Rowe L. Sperm Competition and the Evolution of Ejaculate Composition. Am Nat 2007; 169:E158-72. [PMID: 17479456 DOI: 10.1086/516718] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 02/02/2007] [Indexed: 11/03/2022]
Abstract
We present a model of sperm competition that incorporates both sperm and nonsperm parts of the ejaculate. Our primary focus is on determining how ejaculate composition and size evolves as a function of the effects of seminal fluid on male reproductive success and as a function of asymmetry in sperm usage by females. The model predicts that different patterns of investment in sperm and seminal products are expected to evolve as a function of the bias in sperm usage by females. It also predicts the evolution of distinct patterns in ejaculate composition depending on the function of seminal fluid. In the discussion, we highlight a number of potential approaches for testing the theory that we develop.
Collapse
Affiliation(s)
- Erin Cameron
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
21
|
Fishelson L, Gon O, Holdengreber V, Delarea Y. Comparative spermatogenesis, spermatocytogenesis, and spermatozeugmata formation in males of viviparous species of clinid fishes (Teleostei: Clinidae, Blennioidei). Anat Rec (Hoboken) 2007; 290:311-23. [PMID: 17525946 DOI: 10.1002/ar.20412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermatogenesis and spermatocytogenesis in 16 species of viviparous clinid fishes (Clinidae, Blennioidei) from various localities were followed for the first time by means of light and electron microscopy. The testes of the studied species are of the lobular type, with germinal stem cells situated at the apical ends of the lobules and a vas efferens along the internal margin. Maturation of the spermatides takes place in spermatocysts formed by Sertoli cells around the B-spermatogonia. The gradual condensation and relocation of the chromosomes along the nuclei membranes are highly prominent in this process, which can be divided into several stages. Anisodiametric and slightly flattened sperm heads are eventually formed, 0.4-0.5 microm in diameter and 7.5 +/- 1 microm long, bearing 80 +/- 15 microm long flagella. The sperms are packed into spermatozeugmata within the spermatocysts, enveloped and penetrated by the mucotic material of the Sertoli cells. With division of the germ cells and maturation of the spermatids, the spermatocyst dimensions increase, attaining 40 +/- 8 microm in diameter in the smaller species of Heteroclinus, and up to 90 +/- 10 microm in the larger males of Clinus superciliosus and C. cottoides. Accordingly, the volume of the maturing spermatocysts attains ca. 1,300 +/- 100 microm(3) in the smaller species, and ca. 6,500 +/- 300 microm(3) in the larger ones. As sperm head volume is ca. 2.24 microm(3), the number of sperm in the smallest mature spermatocysts reaches ca. 440 and in the largest over 2,900. Upon release from the cysts, the spermatozeugmata are transported along the sperm ducts to the posterior ampullae where they are stored in the epididymis. During copulation, the sperms are transported from there to the female via the intromittent organ. The sperm formation parameters and their structure and numbers are discussed.
Collapse
Affiliation(s)
- Lev Fishelson
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
22
|
Williams PD, Day T, Cameron E. THE EVOLUTION OF SPERM-ALLOCATION STRATEGIES AND THE DEGREE OF SPERM COMPETITION. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01009.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Williams PD, Day T, Cameron E. THE EVOLUTION OF SPERM-ALLOCATION STRATEGIES AND THE DEGREE OF SPERM COMPETITION. Evolution 2005. [DOI: 10.1554/04-668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.
Collapse
Affiliation(s)
- M A Ball
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|