1
|
Nunney L. The effect of body size and inbreeding on cancer mortality in breeds of the domestic dog: a test of the multi-stage model of carcinogenesis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231356. [PMID: 38298404 PMCID: PMC10827441 DOI: 10.1098/rsos.231356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Cancer is a leading cause of death in domestic dogs. Deaths due to cancer vary widely among breeds, providing an opportunity for testing the multi-stage model of carcinogenesis. This model underpins evolutionary and basic studies of cancer suppression and predicts a linear increase in cancer with breed size, an expectation complicated by bigger breeds having a shorter lifespan (decreasing risk). Using three independent datasets, the weight and lifespan of breeds provided a good fit of lifetime cancer mortality to the multi-stage model, the fit suggesting many canine cancers are initiated by four driver mutations. Of 85 breeds in more than one dataset, only flat-coated retriever showed significantly elevated cancer mortality, with Scottish terrier, Bernese mountain dog and bullmastiff also showing notable risk (greater than 50% over expected). Analysis of breed clades suggested terriers experience elevated cancer mortality. There was no evidence that the lower mass-specific metabolic rate of larger breeds reduced cancer risk. Residuals indicated increased breed inbreeding shortened expected lifespan, but had no overall effect on cancer mortality. The results provide a baseline for identifying increased breed risk for specific cancers and demonstrate that, unless selection promotes increased cancer suppression, the evolution of larger longer-lived animals leads to a predictable increased cancer risk.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Bukkuri A, Pienta KJ, Hockett I, Austin RH, Hammarlund EU, Amend SR, Brown JS. Modeling cancer's ecological and evolutionary dynamics. Med Oncol 2023; 40:109. [PMID: 36853375 PMCID: PMC9974726 DOI: 10.1007/s12032-023-01968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ian Hockett
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
3
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Nunney L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: a re‐evaluation. Evol Appl 2022; 15:891-901. [PMID: 35603034 PMCID: PMC9108310 DOI: 10.1111/eva.13383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Evolving to become bigger and/or longer lived should increase cancer susceptibility, but this predicted increase is not observed, a contradiction named Peto's paradox. A solution is that cancer suppression evolves to minimize cancer susceptibility, and the discovery of 19 retrogene (RTG) copies of the tumor suppressor gene TP53 in the African elephant (Loxodonta africana) is increasingly cited as a classic example of such adaptive suppression. However, classic examples need rigorous evaluation and an alternative hypothesis is that the RTGs spread by genetic drift. This study shows that before its duplication, the ancestral elephant RTG was already truncated from 390 amino acids to 157 by a frameshift mutation, and that 14 of the 19 copies are now truncated to ≤88 amino acids. There was no compelling evidence of either positive or negative selection acting on these 88 codons, and the pattern of RTG accumulation fits a neutral model with a duplication rate of ~10−6 per generation. It is concluded that there is no evidence supporting the hypothesis that the 19 elephant RTGs spread to fixation by selection; instead, the evidence indicates that these RTGs accumulated primarily by segmental duplication and drift. It is shown that the evolutionary multistage model of carcinogenesis (EMMC) predicts the recruitment of 1–2 independently acting tumor suppressor genes to suppress the increased cancer risk in elephants, so it is possible that one or a few RTGs may have been favored by selection resulting in the known enhanced sensitivity of elephant cells to DNA damage. However, the analysis does not provide any support for either a direct (via conserved TP53 activity) or indirect (via supporting canonical TP53 function) role of the RTGs sequences, so that the presence of multiple copies of TP53 retrogenes in elephants needs to be further justified before being used as a classic example of tumor suppression in large‐bodied animals.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
5
|
Tokutomi N, Nakai K, Sugano S. Extreme value theory as a framework for understanding mutation frequency distribution in cancer genomes. PLoS One 2021; 16:e0243595. [PMID: 34424899 PMCID: PMC8382180 DOI: 10.1371/journal.pone.0243595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Currently, the population dynamics of preclonal cancer cells before clonal expansion of tumors has not been sufficiently addressed thus far. By focusing on preclonal cancer cell population as a Darwinian evolutionary system, we formulated and analyzed the observed mutation frequency among tumors (MFaT) as a proxy for the hypothesized sequence read frequency and beneficial fitness effect of a cancer driver mutation. Analogous to intestinal crypts, we assumed that sample donor patients are separate culture tanks where proliferating cells follow certain population dynamics described by extreme value theory (EVT). To validate this, we analyzed three large-scale cancer genome datasets, each harboring > 10000 tumor samples and in total involving > 177898 observed mutation sites. We clarified the necessary premises for the application of EVT in the strong selection and weak mutation (SSWM) regime in relation to cancer genome sequences at scale. We also confirmed that the stochastic distribution of MFaT is likely of the Fréchet type, which challenges the well-known Gumbel hypothesis of beneficial fitness effects. Based on statistical data analysis, we demonstrated the potential of EVT as a population genetics framework to understand and explain the stochastic behavior of driver-mutation frequency in cancer genomes as well as its applicability in real cancer genome sequence data.
Collapse
Affiliation(s)
- Natsuki Tokutomi
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sumio Sugano
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
6
|
Nunney L, Thai K. Determining cancer risk: the evolutionary multistage model or total stem cell divisions? Proc Biol Sci 2020; 287:20202291. [PMID: 33323077 DOI: 10.1098/rspb.2020.2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A recent hypothesis proposed that the total number of stem cell divisions in a tissue (TSCD model) determine its intrinsic cancer risk; however, a different model-the multistage model-has long been used to understand how cancer originates. Identifying the correct model has important implications for interpreting the frequency of cancers. Using worldwide cancer incidence data, we applied three tests to the TSCD model and an evolutionary multistage model of carcinogenesis (EMMC), a model in which cancer suppression is recognized as an evolving trait, with natural selection acting to suppress cancers causing a significant mean loss of Darwinian fitness. Each test supported the EMMC but contradicted the TSCD model. This outcome undermines results based on the TSCD model quantifying the relative importance of 'bad luck' (the random accumulation of somatic mutations) versus environmental and genetic factors in determining cancer incidence. Our testing supported the EMMC prediction that cancers of large rapidly dividing tissues predominate late in life. Another important prediction is that an indicator of recent oncogenic environmental change is an unusually high mean fitness loss due to cancer, rather than a high lifetime incidence. The evolutionary model also predicts that large and/or long-lived animals have evolved mechanisms of cancer suppression that may be of value in preventing or controlling human cancers.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Kevin Thai
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Babbitt GA, Lynch ML, McCoy M, Fokoue EP, Hudson AO. Function and evolution of B-Raf loop dynamics relevant to cancer recurrence under drug inhibition. J Biomol Struct Dyn 2020; 40:468-483. [DOI: 10.1080/07391102.2020.1815578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Miranda L. Lynch
- Hauptmann-Woodward Medical Research Institute, Buffalo, New York, USA
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Ernest P. Fokoue
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
8
|
Nunney L. Resolving Peto's paradox: Modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl 2020; 13:1581-1592. [PMID: 32821274 PMCID: PMC7428811 DOI: 10.1111/eva.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
The intrinsic risk of cancer increases with body size and longevity; however, big long-lived species do not exhibit this increase, a contradiction named Peto's paradox. Five hypotheses potentially resolving this paradox were modeled using the multistage model of carcinogenesis. The five hypotheses were based on (1) intrinsic changes in metabolic rate with body size; adaptive increase in immune policing of (2) cancer cells or (3) cells with driver mutations; or adaptive increase in cancer suppression via (4) decreased somatic mutation rate, or (5) increased genetic control. Parameter changes needed to stabilize cancer risk in three types of cancer were estimated for tissues scaled from mouse size and longevity to human and blue whale levels. The metabolic rate hypothesis alone was rejected due to a conflict between the required interspecific effect with the observed intraspecific effect of size on cancer risk, but some metabolic change was optionally incorporated in the other models. Necessary parameter changes in immune policing and somatic mutation rate far exceeded values observed; however, natural selection increasing the genetic suppression of cancer was generally consistent with data. Such adaptive increases in genetic control of cancers in large and/or long-lived animals raise the possibility that nonmodel animals will reveal novel anticancer mechanisms.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
9
|
Chemical carcinogenicity revisited 1: A unified theory of carcinogenicity based on contemporary knowledge. Regul Toxicol Pharmacol 2019; 103:86-92. [DOI: 10.1016/j.yrtph.2019.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
|
10
|
Nunney L. Size matters: height, cell number and a person's risk of cancer. Proc Biol Sci 2018; 285:rspb.2018.1743. [PMID: 30355711 DOI: 10.1098/rspb.2018.1743] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
The multistage model of carcinogenesis predicts cancer risk will increase with tissue size, since more cells provide more targets for oncogenic somatic mutation. However, this increase is not seen among mammal species of different sizes (Peto's paradox), a paradox argued to be due to larger species evolving added cancer suppression. If this explanation is correct, the cell number effect is still expected within species. Consistent with this, the hazard ratio for overall cancer risk per 10 cm increase in human height (HR10) is about 1.1, indicating a 10% increase in cancer risk per 10 cm; however, an alternative explanation invokes an indirect effect of height, with factors that increase cancer risk independently increasing adult height. The data from four large-scale surveillance projects on 23 cancer categories were tested against quantitative predictions of the cell-number hypothesis, predictions that were accurately supported. For overall cancer risk the HR10 predicted versus observed was 1.13 versus 1.12 for women and 1.11 versus 1.09 for men, suggesting that cell number variation provides a null hypothesis for assessing height effects. Melanoma showed an unexpectedly strong relationship to height, indicating an additional effect, perhaps due to an increasing cell division rate mediated through increasing IGF-I with height. Similarly, only about one-third of the higher incidence of non-reproductive cancers in men versus women can be explained by cell number. The cancer risks of obesity are not correlated with effects of height, consistent with different primary causation. The direct effect of height on cancer risk suggests caution in identifying height-related SNPs as cancer causing.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Hochberg ME, Noble RJ. A framework for how environment contributes to cancer risk. Ecol Lett 2017; 20:117-134. [DOI: 10.1111/ele.12726] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/03/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Michael E. Hochberg
- Intstitut des Sciences de l'Evolution de Montpellier; Université de Montpellier; Place E. Bataillon, CC065 34095 Montpellier Cedex 5 France
- Santa Fe Institute; 1399 Hyde Park Rd. Santa Fe NM 87501 USA
| | - Robert J. Noble
- Intstitut des Sciences de l'Evolution de Montpellier; Université de Montpellier; Place E. Bataillon, CC065 34095 Montpellier Cedex 5 France
| |
Collapse
|
12
|
Abstract
Studies of body size evolution, and life-history theory in general, are conducted without taking into account cancer as a factor that can end an organism's reproductive lifespan. This reflects a tacit assumption that predation, parasitism and starvation are of overriding importance in the wild. We argue here that even if deaths directly attributable to cancer are a rarity in studies of natural populations, it remains incorrect to infer that cancer has not been of importance in shaping observed life histories. We present first steps towards a cancer-aware life-history theory, by quantifying the decrease in the length of the expected reproductively active lifespan that follows from an attempt to grow larger than conspecific competitors. If all else is equal, a larger organism is more likely to develop cancer, but, importantly, many factors are unlikely to be equal. Variations in extrinsic mortality as well as in the pace of life—larger organisms are often near the slow end of the fast–slow life-history continuum—can make realized cancer incidences more equal across species than what would be observed in the absence of adaptive responses to cancer risk (alleviating the so-called Peto's paradox). We also discuss reasons why patterns across species can differ from within-species predictions. Even if natural selection diminishes cancer susceptibility differences between species, within-species differences can remain. In many sexually dimorphic cases, we predict males to be more cancer-prone than females, forming an understudied component of sexual conflict.
Collapse
Affiliation(s)
- Hanna Kokko
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, Berlin 14193, Germany Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Michael E Hochberg
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, Berlin 14193, Germany Institut des Sciences de l'Evolution, Université Montpellier, UMR5554 du CNRS, Montpellier 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Nunney L, Muir B. Peto's paradox and the hallmarks of cancer: constructing an evolutionary framework for understanding the incidence of cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0161. [PMID: 26056359 DOI: 10.1098/rstb.2015.0161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An evolutionary perspective can help unify disparate observations and make testable predictions. We consider an evolutionary model in relation to two mechanistic frameworks of cancer biology: multistage carcinogenesis and the hallmarks of cancer. The multistage model predicts that cancer risk increases with body size and longevity; however, this is not observed across species (Peto's paradox), but the paradox is resolved by invoking the evolution of additional genetic mechanisms to suppress cancer in large, long-lived species. It is when cancer cells overcome these defence mechanisms that they exhibit the hallmarks of cancer, driving the ongoing evolution of these defences, which in turn is expected to create the differences observed in the genetics of cancer across species and tissues. To illustrate the utility of an evolutionary model we examined some recently published data linking stem-cell divisions and cancer incidence across a range of tissues and show why the original analysis was faulty, and demonstrate that the data are consistent with a multistage model varying from three to seven mutational hits across different tissues. Finally, we demonstrate how an evolutionary model can both define patterns of inherited (familial) cancer and explain the prevalence of cancer in post-reproductive years, including the dominance of epithelial cancers.
Collapse
Affiliation(s)
- L Nunney
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - B Muir
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Nunney L. Commentary: The multistage model of carcinogenesis, Peto's paradox and evolution. Int J Epidemiol 2015; 45:649-53. [PMID: 26659656 DOI: 10.1093/ije/dyv201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonard Nunney
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Arnal A, Tissot T, Ujvari B, Nunney L, Solary E, Laplane L, Bonhomme F, Vittecoq M, Tasiemski A, Renaud F, Pujol P, Roche B, Thomas F. The guardians of inherited oncogenic vulnerabilities. Evolution 2015; 70:1-6. [DOI: 10.1111/evo.12809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Audrey Arnal
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
| | - Tazzio Tissot
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences; Deakin University; Waurn Ponds Australia
| | - Leonard Nunney
- Department of Biology; University of California; Riverside California
- Center for Evolution and Cancer; University of California San Francisco; San Francisco California
| | - Eric Solary
- INSERM U1009; Université Paris-Sud; Gustave Roussy Villejuif France
| | - Lucie Laplane
- INSERM U1009; Université Paris-Sud; Gustave Roussy Villejuif France
| | - François Bonhomme
- ISEM Institut des sciences de l’évolution, Université Montpellier 2; CNRS; Montpellier Cedex France
| | - Marion Vittecoq
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
- Centre de Recherche de la Tour du Valat; le Sambuc; 13200 Arles France
| | - Aurélie Tasiemski
- University of Lille, CNRS; UMR 8198 - Evo-Eco-Paleo, 59000 Lille; France
| | - François Renaud
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
| | - Pascal Pujol
- Service de génétique médicale et chromosomique, Unité d'oncogénétique, CHRU de Montpellier; Hôpital Arnaud de Villeneuve; 371 Avenue du Doyen Gaston Giraud 34295 Montpellier France
| | - Benjamin Roche
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMI IRD/UPMC UMMISCO); 32 Avenue Henri Varagnat; 93143 Bondy Cedex France
| | - Frédéric Thomas
- CREEC, MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 64501 34394, Montpellier Cedex 5 France
| |
Collapse
|
16
|
Nunney L, Maley CC, Breen M, Hochberg ME, Schiffman JD. Peto's paradox and the promise of comparative oncology. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140177. [PMID: 26056361 PMCID: PMC4581022 DOI: 10.1098/rstb.2014.0177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
The past several decades have seen a paradigm shift with the integration of evolutionary thinking into studying cancer. The evolutionary lens is most commonly employed in understanding cancer emergence, tumour growth and metastasis, but there is an increasing realization that cancer defences both between tissues within the individual and between species have been influenced by natural selection. This special issue focuses on discoveries of these deeper evolutionary phenomena in the emerging area of 'comparative oncology'. Comparing cancer dynamics in different tissues or species can lead to insights into how biology and ecology have led to differences in carcinogenesis, and the diversity, incidence and lethality of cancers. In this introduction to the special issue, we review the history of the field and outline how the contributions use empirical, comparative and theoretical approaches to address the processes and patterns associated with 'Peto's paradox', the lack of a statistical relationship of cancer incidence with body size and longevity. This burgeoning area of research can help us understand that cancer is not only a disease but is also a driving force in biological systems and species life histories. Comparative oncology will be key to understanding globally important health issues, including cancer epidemiology, prevention and improved therapies.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Biology, University of California Riverside, CA 92521, USA
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA Centre for Evolution and Cancer, Institute for Cancer Research, London, UK
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27695, USA Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, UMR5554 du CNRS, Montpellier 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Joshua D Schiffman
- Primary Children's Hospital (Intermountain Healthcare) and Huntsman Cancer Institute, Departments of Pediatrics and Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Taylor TB, Johnson LJ, Jackson RW, Brockhurst MA, Dash PR. First steps in experimental cancer evolution. Evol Appl 2013; 6:535-48. [PMID: 23745144 PMCID: PMC3673480 DOI: 10.1111/eva.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/23/2012] [Indexed: 12/20/2022] Open
Abstract
Evolutionary processes play a central role in the development, progression and response to treatment of cancers. The current challenge facing researchers is to harness evolutionary theory to further our understanding of the clinical progression of cancers. Central to this endeavour will be the development of experimental systems and approaches by which theories of cancer evolution can be effectively tested. We argue here that the experimental evolution approach - whereby evolution is observed in real time and which has typically employed microorganisms - can be usefully applied to cancer. This approach allows us to disentangle the ecological causes of natural selection, identify the genetic basis of evolutionary changes and determine their repeatability. Cell cultures used in cancer research share many of the desirable traits that make microorganisms ideal for studying evolution. As such, experimental cancer evolution is feasible and likely to give great insight into the selective pressures driving the evolution of clinically destructive cancer traits. We highlight three areas of evolutionary theory with importance to cancer biology that are amenable to experimental evolution: drug resistance, social evolution and resource competition. Understanding the diversity, persistence and evolution of cancers is vital for treatment and drug development, and an experimental evolution approach could provide strategic directions and focus for future research.
Collapse
|
18
|
Nunney L. The real war on cancer: the evolutionary dynamics of cancer suppression. Evol Appl 2013; 6:11-9. [PMID: 23396311 PMCID: PMC3567467 DOI: 10.1111/eva.12018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/07/2012] [Indexed: 12/25/2022] Open
Abstract
Cancer is a disease of multicellular animals caused by unregulated cell division. The prevailing model of cancer (multistage carcinogenesis) is based on the view that cancer results after a series of (generally somatic) mutations that knock out the genetic mechanisms suppressing unregulated cell growth. The chance of these mutations occurring increases with size and longevity, leading to Peto's paradox: why don't large animals have a higher lifetime incidence of cancer than small animals? The solution to this paradox is evolution. From an evolutionary perspective, an increasing frequency of prereproductive cancer deaths results in natural selection for enhanced cancer suppression. The expected result is a prereproductive risk of cancer across species that is independent of life history. However, within species, we still expect cancer risk to increase with size and longevity. Here, I review the evolutionary model of cancer suppression and some recent empirical evidence supporting it. Data from humans and domestic dogs confirm the expected intraspecific association between size and cancer risk, while results from interspecific comparisons between rodents provide the best evidence to date of the predicted recruitment of additional cancer suppression mechanisms as species become larger or longer lived.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Biology, University of California Riverside, CA, USA and Center for Evolution and Cancer, University of California San Francisco, CA, USA
| |
Collapse
|
19
|
Roche B, Sprouffske K, Hbid H, Missé D, Thomas F. Peto's paradox revisited: theoretical evolutionary dynamics of cancer in wild populations. Evol Appl 2012; 6:109-16. [PMID: 23396800 PMCID: PMC3567476 DOI: 10.1111/eva.12025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022] Open
Abstract
If the occurrence of cancer is the result of a random lottery among cells, then body mass, a surrogate for cells number, should predict cancer incidence. Despite some support in humans, this assertion does not hold over the range of different natural animal species where cancer incidence is known. Explaining the so-called 'Peto's paradox' is likely to increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study how body mass may affect the evolutionary dynamics of tumor suppressor gene (TSG) inactivation and oncogene activation in natural animal species. We show that the rate of TSG inactivation should evolve to lower values along a gradient of body mass in a nonlinear manner, having a threshold beyond which benefits to adaptive traits cannot overcome their costs. We also show that oncogenes may be frequently activated within populations of large organisms. We then propose experimental settings that can be employed to identify protection mechanisms against cancer. We finally highlight fundamental species traits that natural selection should favor against carcinogenesis. We conclude on the necessity of comparing genomes between populations of a single species or genomes between species to better understand how evolution has molded protective mechanisms against cancer development and associated mortality.
Collapse
Affiliation(s)
- Benjamin Roche
- IRD, UMMISCO (UMI IRD/UPMC) Bondy, France ; CREEC, Université Montpellier 2 Montpellier, France
| | | | | | | | | |
Collapse
|
20
|
Abstract
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Institute for Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lauren M.F. Merlo
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Philip J. Gerrish
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA; Centro de Matemática e Aplicaç ôes Fundamentais, Department of Mathematics, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carlo C. Maley
- Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, Department of Surgery, University of California, 2340 Sutter Street, PO Box 1351, San Francisco, CA 94115, USA
| | - Paul D. Sniegowski
- Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, PA 19104-6018, USA
| |
Collapse
|
21
|
Roche B, Hochberg ME, Caulin AF, Maley CC, Gatenby RA, Misse D, Thomas F. Natural resistance to cancers: a Darwinian hypothesis to explain Peto's paradox. BMC Cancer 2012; 12:387. [PMID: 22943484 PMCID: PMC3488527 DOI: 10.1186/1471-2407-12-387] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 11/15/2022] Open
Abstract
Background Peto's paradox stipulates that there is no association between body mass (a surrogate of number of cells and longevity) and cancer prevalence in wildlife species. Resolving this paradox is a very promising research direction to understand mechanisms of cancer resistance. As of present, research has been focused on the consequences of these evolutionary pressures rather than of their causes. Discussion Here, we argue that evolution through natural selection may have shaped mechanisms of cancer resistance in wildlife species and that this can result in a threshold in body mass above which oncogenic and tumor suppressive mechanisms should be increasingly purified and positively selected, respectively. Summary We conclude that assessing wildlife species in their natural ecosystems, especially through theoretical modeling, is the most promising way to understand how evolutionary processes can favor one or the other pathway. This will provide important insights into mechanisms of cancer resistance.
Collapse
Affiliation(s)
- Benjamin Roche
- IRD, UMMISCO UMI IRD/UPMC, 32, avenue Henry Varagnat, 93143, Bondy Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Andrusiewicz M, Szczerba A, Wołuń-Cholewa M, Warchoł W, Nowak-Markwitz E, Gąsiorowska E, Adamska K, Jankowska A. CGB and GNRH1 expression analysis as a method of tumor cells metastatic spread detection in patients with gynecological malignances. J Transl Med 2011; 9:130. [PMID: 21827674 PMCID: PMC3173340 DOI: 10.1186/1479-5876-9-130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/09/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Metastasis is a common feature of many advanced stage cancers and metastatic spread is thought to be responsible for cancer progression. Most cancer cells are localized in the primary tumor and only a small population of circulating tumor cells (CTC) has metastatic potential. CTC amount reflects the aggressiveness of tumors, therefore their detection can be used to determine the prognosis and treatment of cancer patients.The aim of this study was to evaluate human chorionic gonadotropin beta subunit (CGB) and gonadoliberin type 1 (GNRH1) expression as markers of tumor cells circulating in peripheral blood of gynecological cancer patients, indicating the metastatic spread of tumor. METHODS CGB and GNRH1 expression level in tumor tissue and blood of cancer patients was assessed by real-time RT-PCR. The data was analyzed using the Mann-Whitney U and Spearman tests. In order to distinguish populations with homogeneous genes' expression the maximal likelihood method for one- and multiplied normal distribution was used. RESULT Real time RT-PCR results revealed CGB and GNRH1 genes activity in both tumor tissue and blood of gynecological cancers patients. While the expression of both genes characterized all examined tumor tissues, in case of blood analysis, the transcripts of GNRH1 were found in all cancer patients while CGB were present in 93% of patients. CGB and GNRH1 activity was detected also in control group, which consisted of tissue lacking cancerous changes and blood of healthy volunteers. The log-transformation of raw data fitted to multiplied normal distribution model showed that CGB and GNRH1 expression is heterogeneous and more than one population can be distinguished within defined groups.Based on CGB gene activity a critical value indicating the presence of cancer cells in studied blood was distinguished. In case of GNRH1 this value was not established since the results of the gene expression in blood of cancer patients and healthy volunteers were overlapping. However one subpopulation consists of cancer patient with much higher GNRH1 expression than in control group was found. CONCLUSIONS Assessment of CGB and GNRH1 expression level in cancer patients' blood may be useful for indicating metastatic spread of tumor cells.
Collapse
|
23
|
Abstract
Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.
Collapse
Affiliation(s)
- Jasmine Foo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Naugler CT. Population genetics of cancer cell clones: possible implications of cancer stem cells. Theor Biol Med Model 2010; 7:42. [PMID: 21062473 PMCID: PMC2994797 DOI: 10.1186/1742-4682-7-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/09/2010] [Indexed: 11/13/2022] Open
Abstract
Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.
Collapse
Affiliation(s)
- Christopher T Naugler
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, C414, Diagnostic and Scientific Centre, 9, 3535 Research Road NW, Calgary AB, T2L 2K8 Canada.
| |
Collapse
|
25
|
Laird RA, Sherratt TN. The evolution of senescence in multi-component systems. Biosystems 2010; 99:130-9. [DOI: 10.1016/j.biosystems.2009.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/18/2009] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
|
26
|
Abstract
As Theodosius Dobzhansky famously noted in 1973, "Nothing in biology makes sense except in the light of evolution," and cancer is no exception to this rule. Our understanding of cancer initiation, progression, treatment, and resistance has advanced considerably by regarding cancer as the product of evolutionary processes. Here we review the literature of mathematical models of cancer evolution and provide a synthesis and discussion of the field.
Collapse
|
27
|
LAIRD RA, SHERRATT TN. The evolution of senescence through decelerating selection for system reliability. J Evol Biol 2009; 22:974-82. [DOI: 10.1111/j.1420-9101.2009.01709.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Frank SA. Evolutionary dynamics of redundant regulatory control. J Theor Biol 2008; 255:64-8. [PMID: 18723030 DOI: 10.1016/j.jtbi.2008.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Many complex regulatory processes concern tracking a constant or variable set point. Examples include temperature homeostasis, rhythmic oscillation, and the concentration of key metabolites and enzymes. Control over homeostatic or tracking phenotypes often depends on multiple, overlapping regulatory systems. In this paper, I develop a theory for the evolutionary dynamics of redundant regulatory control architecture. Prior theories analyzed the evolution of redundant control architectures by the balance between improved performance for additional redundant control weighed against the decay by germline mutation that arises in characters with overlapping function. By contrast, I argue that germline mutation is likely to be a very weak balancing force in evolutionary dynamics. Instead, I analyze the evolutionary dynamics of redundant control by a balance between the benefits of reduced tracking error and the costs of building and running the multiple control systems. In one particular mathematical model that highlights key features of evolutionary dynamics, additional redundant control reduces tracking error multiplicatively but contributes to costs additively. In that model, the performance landscape has multiple peaks of the same height, one peak for each level of redundancy and the associated optimal investment per control structure. The multipeak landscape imposes evolutionary stasis, in which control systems resist invasion by increased or decreased levels of redundancy. However, fluctuating environments likely favor a rise in redundancy over time. With greater redundancy, investment per individual control structure declines, causing a decay in the performance of each individual dimension of control. I conclude that the costs of control structures may influence regulatory architecture.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| |
Collapse
|
29
|
Abstract
Neoplasms are microcosms of evolution. Within a neoplasm, a mosaic of mutant cells compete for space and resources, evade predation by the immune system and can even cooperate to disperse and colonize new organs. The evolution of neoplastic cells explains both why we get cancer and why it has been so difficult to cure. The tools of evolutionary biology and ecology are providing new insights into neoplastic progression and the clinical control of cancer.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Cellular and Molecular Oncology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
30
|
Crespi BJ, Summers K. Positive selection in the evolution of cancer. Biol Rev Camb Philos Soc 2006; 81:407-24. [PMID: 16762098 DOI: 10.1017/s1464793106007056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 01/29/2023]
Abstract
We hypothesize that forms of antagonistic coevolution have forged strong links between positive selection at the molecular level and increased cancer risk. By this hypothesis, evolutionary conflict between males and females, mothers and foetuses, hosts and parasites, and other parties with divergent fitness interests has led to rapid evolution of genetic systems involved in control over fertilization and cellular resources. The genes involved in such systems promote cancer risk as a secondary effect of their roles in antagonistic coevolution, which generates evolutionary disequilibrium and maladaptation. Evidence from two sources: (1) studies on specific genes, including SPANX cancer/testis antigen genes, several Y-linked genes, the pem homebox gene, centromeric histone genes, the breast cancer gene BRCA1, the angiogenesis gene ANG, cadherin genes, cytochrome P450 genes, and viral oncogenes; and (2) large-scale database studies of selection on different functional categories of genes, supports our hypothesis. These results have important implications for understanding the evolutionary underpinnings of cancer and the dynamics of antagonistically-coevolving molecular systems.
Collapse
Affiliation(s)
- Bernard J Crespi
- Behavioural Ecology Research Group, Department of Biology, Simon Fraser University, Burnaby, BC V5A 1 S6 Canada.
| | | |
Collapse
|
31
|
Crespi B, Summers K. Evolutionary biology of cancer. Trends Ecol Evol 2005; 20:545-52. [PMID: 16701433 DOI: 10.1016/j.tree.2005.07.007] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/22/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022]
Abstract
Cancer is driven by the somatic evolution of cell lineages that have escaped controls on replication and by the population-level evolution of genes that influence cancer risk. We describe here how recent evolutionary ecological studies have elucidated the roles of predation by the immune system and competition among normal and cancerous cells in the somatic evolution of cancer. Recent analyses of the evolution of cancer at the population level show how rapid changes in human environments have augmented cancer risk, how strong selection has frequently led to increased cancer risk as a byproduct, and how anticancer selection has led to tumor-suppression systems, tissue designs that slow somatic evolution, constraints on morphological evolution and even senescence itself. We discuss how applications of the tools of ecology and evolutionary biology are poised to revolutionize our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Behavioural Ecology Research Group, Department of Biosciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.
| | | |
Collapse
|
32
|
Abstract
Individuals differ in their inherited tendency to develop cancer. Major single-gene defects that cause early cancer onset have been known for many years from their inheritance patterns, and inherited defects that have weaker effects on predisposition were also suspected to exist. Recent progress in cancer genetics has identified specific loci that are involved in cancer progression, many of which have key roles in DNA repair, cell-cycle control and cell-death pathways. Those loci, which are often mutated somatically during cancer progression, sometimes also contain inherited mutations. Recent genetic studies and quantitative population-genetic analyses provide a framework for understanding the frequency of inherited mutations and the consequences of these mutations for increased predisposition to cancer.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| |
Collapse
|
33
|
Abstract
Somatic mutation plays a key role in transforming normal cells into cancerous cells. The analysis of cancer progression therefore requires the study of how point mutations and chromosomal mutations accumulate in cellular lineages. The spread of somatic mutations depends on the mutation rate, the number of cell divisions in the history of a cellular lineage, and the nature of competition between different cellular lineages. We consider how various aspects of tissue architecture and cellular competition affect the pace of mutation accumulation. We also discuss the rise and fall of somatic mutation rates during cancer progression.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology & Evolutionary Biology, University of California, Irvine CA 92717, USA.
| | | |
Collapse
|