1
|
Hider J, Duggan AT, Klunk J, Eaton K, Long GS, Karpinski E, Giuffra V, Ventura L, Fornaciari A, Fornaciari G, Golding GB, Prowse TL, Poinar HN. Examining pathogen DNA recovery across the remains of a 14th century Italian friar (Blessed Sante) infected with Brucella melitensis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2022; 39:20-34. [PMID: 36174312 DOI: 10.1016/j.ijpp.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate variation in ancient DNA recovery of Brucella melitensis, the causative agent of brucellosis, from multiple tissues belonging to one individual MATERIALS: 14 samples were analyzed from the mummified remains of the Blessed Sante, a 14 th century Franciscan friar from central Italy, with macroscopic diagnosis of probable brucellosis. METHODS Shotgun sequencing data from was examined to determine the presence of Brucella DNA. RESULTS Three of the 14 samples contained authentic ancient DNA, identified as belonging to B. melitensis. A genome (23.81X depth coverage, 0.98 breadth coverage) was recovered from a kidney stone. Nine of the samples contained reads classified as B. melitensis (7-169), but for many the data quality was insufficient to withstand our identification and authentication criteria. CONCLUSIONS We identified significant variation in the preservation and abundance of B. melitensis DNA present across multiple tissues, with calcified nodules yielding the highest number of authenticated reads. This shows how greatly sample selection can impact pathogen identification. SIGNIFICANCE Our results demonstrate variation in the preservation and recovery of pathogen DNA across tissues. This study highlights the importance of sample selection in the reconstruction of infectious disease burden and highlights the importance of a holistic approach to identifying disease. LIMITATIONS Study focuses on pathogen recovery in a single individual. SUGGESTIONS FOR FURTHER RESEARCH Further analysis of how sampling impacts aDNA recovery will improve pathogen aDNA recovery and advance our understanding of disease in past peoples.
Collapse
Affiliation(s)
- Jessica Hider
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| | - Ana T Duggan
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Daicel Arbor Biosciences, 5840 Interface Drive, Suite 101, Ann Arbor, MI 48103, USA
| | - Katherine Eaton
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - George S Long
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Emil Karpinski
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, Medical School, via Roma 57, 56126 Pisa, PI, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy; Division of Pathology, San Salvatore Hospital, University of L'Aquila, Coppito, 67100 L'Aquila, AQ, Italy
| | - Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, Medical School, via Roma 57, 56126 Pisa, PI, Italy
| | - Gino Fornaciari
- Maria Luisa di Borbone Academy, Villa Borbone, viale dei Tigli 32, 55049 Viareggio, LU, Italy
| | - G Brian Golding
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Tracy L Prowse
- Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L9, Canada
| |
Collapse
|
2
|
Rifkin RF, Potgieter M, Ramond J, Cowan DA. Ancient oncogenesis, infection and human evolution. Evol Appl 2017; 10:949-964. [PMID: 29151852 PMCID: PMC5680625 DOI: 10.1111/eva.12497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The recent discovery that malignant neoplastic lesions date back nearly 2 million years ago not only highlights the antiquity of cancer in the human lineage, but also provides remarkable insight into ancestral hominin disease pathology. Using these Early Pleistocene examples as a point of departure, we emphasize the prominent role of viral and bacterial pathogens in oncogenesis and evaluate the impact of pathogens on human evolutionary processes in Africa. In the Shakespearean vernacular "what's past is prologue," we highlight the significance of novel information derived from ancient pathogenic DNA. In particular, and given the temporal depth of human occupation in sub-Saharan Africa, it is emphasized that the region is ideally positioned to play a strategic role in the discovery of ancient pathogenic drivers of not only human mortality, but also human evolution. Ancient African pathogen genome data can provide novel revelations concerning human-pathogen coevolutionary processes, and such knowledge is essential for forecasting the ways in which emerging zoonotic and increasingly transmissible diseases might influence human demography and longevity in the future.
Collapse
Affiliation(s)
- Riaan F. Rifkin
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Jean‐Baptiste Ramond
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
4
|
Abstract
MOTIVATIONS Recent progress in ancient DNA sequencing technologies and protocols has lead to the sequencing of whole ancient bacterial genomes, as illustrated by the recent sequence of the Yersinia pestis strain that caused the Black Death pandemic. However, sequencing ancient genomes raises specific problems, because of the decay and fragmentation of ancient DNA among others, making the scaffolding of ancient contigs challenging. RESULTS We show that computational paleogenomics methods aimed at reconstructing the organization of ancestral genomes from the comparison of extant genomes can be adapted to correct, order and orient ancient bacterial contigs. We describe the method FPSAC (fast phylogenetic scaffolding of ancient contigs) and apply it on a set of 2134 ancient contigs assembled from the recently sequenced Black Death agent genome. We obtain a unique scaffold for the whole chromosome of this ancient genome that allows to gain precise insights into the structural evolution of the Yersinia clade.
Collapse
Affiliation(s)
- Ashok Rajaraman
- Department of Mathematics, Simon Fraser University, Burnaby (BC) V5A1S6, Canada, International Graduate Training Center in Mathematical Biology, Pacific Institute for the Mathematical Sciences, Vancouver (BC), Canada, INRIA Grenoble Rhône-Alpes, Montbonnot 38334, France, Université de Lyon 1, Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR5558 F-69622 Villeurbanne, France and LaBRI, Université Bordeaux I, 33405 Talence, France
| | | | | |
Collapse
|
5
|
Abstract
The use of ancient DNA in paleopathological studies of tuberculosis has largely been restricted to confirmation of disease identifications made by skeletal analysis; few attempts at obtaining genotype data from archaeological samples have been made because of the need to perform different PCRs for each genetic locus being studied in an ancient DNA extract. We used a next generation sequencing approach involving hybridization capture directed at specific polymorphic regions of the Mycobacterium tuberculosis genome to identify a detailed genotype for a historic strain of M. tuberculosis from an individual buried in the 19th century St. George's Crypt, Leeds, West Yorkshire, England. We obtained 664,500 sequencing by oligonucleotide ligation and detection (SOLiD) reads that mapped to the targeted regions of the M. tuberculosis genome; the coverage included 218 of 247 SNPs, 10 of 11 insertion/deletion regions, and the repeat elements IS1081 and IS6110. The accuracy of the SOLiD data was checked by conventional PCRs directed at 11 SNPs and two insertion/deletions. The data placed the historic strain of M. tuberculosis in a group that is uncommon today, but it is known to have been present in North America in the early 20th century. Our results show the use of hybridization capture followed by next generation sequencing as a means of obtaining detailed genotypes of ancient varieties of M. tuberculosis, potentially enabling meaningful comparisons between strains from different geographic locations and different periods in the past.
Collapse
|
6
|
Donoghue HD, Lee OYC, Minnikin DE, Besra GS, Taylor JH, Spigelman M. Tuberculosis in Dr Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis. Proc Biol Sci 2009; 277:51-6. [PMID: 19793751 PMCID: PMC2842630 DOI: 10.1098/rspb.2009.1484] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
'Dr Granville's mummy' was described to the Royal Society of London in 1825 and was the first ancient Egyptian mummy to be subjected to a scientific autopsy. The remains are those of a woman, Irtyersenu, aged about 50, from the necropolis of Thebes and dated to about 600 BC. Augustus Bozzi Granville (1783-1872), an eminent physician and obstetrician, described many organs still in situ and attributed the cause of death to a tumour of the ovary. However, subsequent histological investigations indicate that the tumour is a benign cystadenoma. Histology of the lungs demonstrated a potentially fatal pulmonary exudate and earlier studies attempted to associate this with particular disease conditions. Palaeopathology and ancient DNA analyses show that tuberculosis was widespread in ancient Egypt, so a systematic search for tuberculosis was made, using specific DNA and lipid biomarker analyses. Clear evidence for Mycobacterium tuberculosis complex DNA was obtained in lung tissue and gall bladder samples, based on nested PCR of the IS6110 locus. Lung and femurs were positive for specific M. tuberculosis complex cell-wall mycolic acids, demonstrated by high-performance liquid chromatography of pyrenebutyric acid-pentafluorobenzyl mycolates. Therefore, tuberculosis is likely to have been the major cause of death of Irtyersenu.
Collapse
Affiliation(s)
- Helen D Donoghue
- Centre for Infectious Diseases and International Health, University College London, London W1T 4JF, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Fournier GP, Huang J, Gogarten JP. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc Lond B Biol Sci 2009; 364:2229-39. [PMID: 19571243 PMCID: PMC2873001 DOI: 10.1098/rstb.2009.0033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the 'true' evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.
Collapse
Affiliation(s)
- Gregory P. Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| |
Collapse
|