1
|
Yuan M, Yang X, Lin J, Cao X, Chen F, Zhang X, Li Z, Zheng G, Wang X, Chen X, Yang JR. Alignment of Cell Lineage Trees Elucidates Genetic Programs for the Development and Evolution of Cell Types. iScience 2020; 23:101273. [PMID: 32599560 PMCID: PMC7327887 DOI: 10.1016/j.isci.2020.101273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
A full understanding of the developmental process requires fine-scale characterization of cell divisions and cell types, which are naturally organized as the developmental cell lineage tree (CLT). Technological breakthroughs facilitated determination of more CLTs, but complete comprehension of the data remains difficult without quantitative comparison among CLTs. We hereby quantified phenotypic similarity between CLTs using a novel computational method that exhaustively searches for optimal correspondence between individual cells meanwhile retaining their topological relationships. The revealed CLT similarities allowed us to infer functional similarity at the transcriptome level, identify cell fate transformations, predict functional relationships between mutants, and find evolutionary correspondence between cell types of different species. By allowing quantitative comparison between CLTs, our work is expected to greatly enhance the interpretability of relevant data and help answer the myriad of questions surrounding the developmental process. Align cell lineage trees (CLTs) to search/quantify their phenotypic similarities Aligning worm CLTs captured known genetic/developmental programs Similarities between knockdown CLTs revealed functional relationships between genes CLT alignments between species gave insight on the evolution of cell types
Collapse
Affiliation(s)
- Meng Yuan
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xujiang Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghua Lin
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolong Cao
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng Chen
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Zhang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zizhang Li
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guifeng Zheng
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueqin Wang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Ollé-Vila A, Duran-Nebreda S, Conde-Pueyo N, Montañez R, Solé R. A morphospace for synthetic organs and organoids: the possible and the actual. Integr Biol (Camb) 2016; 8:485-503. [PMID: 27032985 DOI: 10.1039/c5ib00324e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efforts in evolutionary developmental biology have shed light on how organs are developed and why evolution has selected some structures instead of others. These advances in the understanding of organogenesis along with the most recent techniques of organotypic cultures, tissue bioprinting and synthetic biology provide the tools to hack the physical and genetic constraints in organ development, thus opening new avenues for research in the form of completely designed or merely altered settings. Here we propose a unifying framework that connects the concept of morphospace (i.e. the space of possible structures) with synthetic biology and tissue engineering. We aim for a synthesis that incorporates our understanding of both evolutionary and architectural constraints and can be used as a guide for exploring alternative design principles to build artificial organs and organoids. We present a three-dimensional morphospace incorporating three key features associated to organ and organoid complexity. The axes of this space include the degree of complexity introduced by developmental mechanisms required to build the structure, its potential to store and react to information and the underlying physical state. We suggest that a large fraction of this space is empty, and that the void might offer clues for alternative ways of designing and even inventing new organs.
Collapse
Affiliation(s)
- Aina Ollé-Vila
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
3
|
Yang JR, Ruan S, Zhang J. Determinative developmental cell lineages are robust to cell deaths. PLoS Genet 2014; 10:e1004501. [PMID: 25058586 PMCID: PMC4110091 DOI: 10.1371/journal.pgen.1004501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuxiang Ruan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Larsson JÅ, Wadströmer N, Hermanson O, Lendahl U, Forchheimer R. Modelling cell lineage using a meta-Boolean tree model with a relation to gene regulatory networks. J Theor Biol 2011; 268:62-76. [DOI: 10.1016/j.jtbi.2010.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
|
5
|
Geard N, Wiles J. LinMap: visualizing complexity gradients in evolutionary landscapes. ARTIFICIAL LIFE 2008; 14:277-297. [PMID: 18489254 DOI: 10.1162/artl.2008.14.3.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This article describes an interactive visualization tool, LinMap, for exploring the structure of complexity gradients in evolutionary landscapes. LinMap is a computationally efficient and intuitive tool for visualizing and exploring multidimensional parameter spaces. An artificial cell lineage model is presented that allows complexity to be quantified according to several different developmental and phenotypic metrics. LinMap is applied to the evolutionary landscapes generated by this model to demonstrate that different definitions of complexity produce different gradients across the same landscape; that landscapes are characterized by a phase transition between proliferating and quiescent cell lineages where both complexity and diversity are maximized; and that landscapes defined by adaptive fitness and complexity can display different topographical features.
Collapse
Affiliation(s)
- Nicholas Geard
- ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
6
|
Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development. Curr Biol 2007; 17:1925-37. [DOI: 10.1016/j.cub.2007.10.061] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 11/22/2022]
|