1
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
2
|
Kennedy GG, Sharpee W, Jacobson AL, Wambugu M, Mware B, Hanley-Bowdoin L. Genome segment ratios change during whitefly transmission of two bipartite cassava mosaic begomoviruses. Sci Rep 2023; 13:10059. [PMID: 37344614 DOI: 10.1038/s41598-023-37278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
Cassava mosaic disease is caused by a complex of whitefly-transmitted begomoviruses, which often occur in co-infections. These viruses have bipartite genomes consisting of DNA-A and DNA-B that are encapsidated into separate virions. Individual viruses exist in plants and whitefly vectors as populations comprising both genome segments, which can occur at different frequencies. Both segments are required for infection, and must be transmitted for virus spread to occur. Cassava plants infected with African cassava mosaic virus (ACMV) and/or East African cassava mosaic Cameroon virus (EACMCV), in which the ratios of DNA-A:DNA-B titers differed between plants, were used to examine how titers of the segments in a plant relate to their respective probabilities of acquisition by whiteflies and to the titers of each segment acquired and subsequently transmitted by whiteflies. The probabilities of acquiring each segment of ACMV did not reflect their relative titers in the source plant but they did for EACMCV. However, for both viruses, DNA-A:DNA-B ratios acquired by whiteflies differed from those in the source plant and the ratios transmitted by the whitefly did not differ from one - the ratio at which the highest probability of transmitting both segments is expected.
Collapse
Grants
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- Hatch Project NCO2784 U.S. Department of Agriculture
Collapse
Affiliation(s)
- George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA.
| | - William Sharpee
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA
| | - Alana L Jacobson
- Department of Entomology, Auburn University, Auburn, AL, 36849, USA
| | - Mary Wambugu
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Benard Mware
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Park H, Denha S, Higgs PG. Evolution of Bipartite and Segmented Viruses from Monopartite Viruses. Viruses 2023; 15:v15051135. [PMID: 37243221 DOI: 10.3390/v15051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
RNA viruses may be monopartite (all genes on one strand), multipartite (two or more strands packaged separately) or segmented (two or more strands packaged together). In this article, we consider competition between a complete monopartite virus, A, and two defective viruses, D and E, that have complementary genes. We use stochastic models that follow gene translation, RNA replication, virus assembly, and transmission between cells. D and E multiply faster than A when stored in the same host as A or when together in the same host, but they cannot multiply alone. D and E strands are packaged as separate particles unless a mechanism evolves that allows assembly of D + E segmented particles. We show that if defective viruses assemble rapidly into separate particles, the formation of segmented particles is selected against. In this case, D and E spread as parasites of A, and the bipartite D + E combination eliminates A if the transmissibility is high. Alternatively, if defective strands do not assemble rapidly into separate particles, then a mechanism for assembly of segmented particles is selected for. In this case, the segmented virus can eliminate A if transmissibility is high. Conditions of excess protein resources favor bipartite viruses, while conditions of excess RNA resources favor segmented viruses. We study the error threshold behavior that arises when deleterious mutations are introduced. Relative to bipartite and segmented viruses, deleterious mutations favor monopartite viruses. A monopartite virus can give rise to either a bipartite or a segmented virus, but it is unlikely that both will originate from the same virus.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Saven Denha
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| |
Collapse
|
4
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
5
|
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution. Proc Natl Acad Sci U S A 2022; 119:e2201453119. [PMID: 35914138 PMCID: PMC9371732 DOI: 10.1073/pnas.2201453119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Collapse
|
6
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
7
|
DeLong JP, Al-Sammak MA, Al-Ameeli ZT, Dunigan DD, Edwards KF, Fuhrmann JJ, Gleghorn JP, Li H, Haramoto K, Harrison AO, Marston MF, Moore RM, Polson SW, Ferrell BD, Salsbery ME, Schvarcz CR, Shirazi J, Steward GF, Van Etten JL, Wommack KE. Towards an integrative view of virus phenotypes. Nat Rev Microbiol 2021; 20:83-94. [PMID: 34522049 DOI: 10.1038/s41579-021-00612-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.
Collapse
Affiliation(s)
- John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Maitham A Al-Sammak
- Tropical Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zeina T Al-Ameeli
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Hanqun Li
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Amelia O Harrison
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, USA. .,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
9
|
Zwart MP, Blanc S, Johnson M, Manrubia S, Michalakis Y, Sofonea MT. Unresolved advantages of multipartitism in spatially structured environments. Virus Evol 2021; 7:veab004. [PMID: 33614160 PMCID: PMC7882214 DOI: 10.1093/ve/veab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multipartite viruses have segmented genomes and package each of their genome segments individually into distinct virus particles. Multipartitism is common among plant viruses, but why this apparently costly genome organization and packaging has evolved remains unclear. Recently Zhang and colleagues developed network epidemiology models to study the epidemic spread of multipartite viruses and their distribution over plant and animal hosts (Phys. Rev. Lett. 2019, 123, 138101). In this short commentary, we call into question the relevance of these results because of key model assumptions. First, the model of plant hosts assumes virus transmission only occurs between adjacent plants. This assumption overlooks the basic but imperative fact that most multipartite viruses are transmitted over variable distances by mobile animal vectors, rendering the model results irrelevant to differences between plant and animal hosts. Second, when not all genome segments of a multipartite virus are transmitted to a host, the model assumes an incessant latent infection occurs. This is a bold assumption for which there is no evidence to date, making the relevance of these results to understanding multipartitism questionable.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier 34398, France
| | - Marcelle Johnson
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), C/Darwin no 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Yannis Michalakis
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| | - Mircea T Sofonea
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| |
Collapse
|
10
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
11
|
Jekayinoluwa T, Tripathi L, Tripathi JN, Ntui VO, Obiero G, Muge E, Dale J. RNAi technology for management of banana bunchy top disease. Food Energy Secur 2020; 9:e247. [PMID: 33381301 PMCID: PMC7757248 DOI: 10.1002/fes3.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Banana bunchy top disease (BBTD) is one of the world's most destructive viral diseases of banana and plantain, causing up to 100% yield loss in severe cases. The disease is vectored by banana aphids (Pentalonia nigronervosa) and carried long distances through the movement of infected plant materials. The banana aphids harboring banana bunchy top virus (BBTV) present in banana producing regions are the sole vector and the most efficient method of transmitting the virus to the healthy plants. Controlling the spread of BBTD has been very challenging since no known banana germplasm is immune to BBTV. The disease can be managed with the use of virus-free planting material and roguing. However, once BBTD is established in the field, it is very difficult to eradicate or manage it. Therefore, a more sustainable way of controlling the disease is developing host plant resistance against the virus and the vector. Biotechnological strategies via RNA interference (RNAi) could be used to target the banana aphid as well as BBTV to reduce virus-associated yield losses of banana and plantain, which feed over 500 million people around the world. This review discusses the status of BBTD and perspectives on effective RNAi technologies for controlling BBTV and the vector, banana aphid, transmitting the virus as sustainable management of the disease.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical AgricultureNairobiKenya
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - George Obiero
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Edward Muge
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - James Dale
- Queensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
12
|
Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments †. Virus Evol 2020; 6:veaa022. [PMID: 32405432 PMCID: PMC7206449 DOI: 10.1093/ve/veaa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multipartite viruses have two or more genome segments, and package different segments into different particle types. Although multipartition is thought to have a cost for virus transmission, its benefits are not clear. Recent experimental work has shown that the equilibrium frequency of viral genome segments, the setpoint genome formula (SGF), can be unbalanced and host-species dependent. These observations have reinvigorated the hypothesis that changes in genome-segment frequencies can lead to changes in virus-gene expression that might be adaptive. Here we explore this hypothesis by developing models of bipartite virus infection, leading to a threefold contribution. First, we show that the SGF depends on the cellular multiplicity of infection (MOI), when the requirements for infection clash with optimizing the SGF for virus-particle yield per cell. Second, we find that convergence on the SGF is very rapid, often occurring within a few cellular rounds of infection. Low and intermediate MOIs lead to faster convergence on the SGF. For low MOIs, this effect occurs because of the requirements for infection, whereas for intermediate MOIs this effect is also due to the high levels of variation generated in the genome formula (GF). Third, we explored the conditions under which a bipartite virus could outcompete a monopartite one. As the heterogeneity between environments and specificity of gene-expression requirements for each environment increased, the bipartite virus was more likely to outcompete the monopartite virus. Under some conditions, changes in the GF helped to exclude the monopartite competitor, highlighting the versatility of the GF. Our results show the inextricable relationship between MOI and the SGF, and suggest that under some conditions, the cost of multipartition can be outweighed by its benefits for the rapid tuning of viral gene expression.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, Valéncia 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
13
|
Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M, Gaafar Y, Ziebell H, Michalakis Y, Zeddam JL, Blanc S. Route of a Multipartite Nanovirus across the Body of Its Aphid Vector. J Virol 2020; 94:e01998-19. [PMID: 32102876 PMCID: PMC7163135 DOI: 10.1128/jvi.01998-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.
Collapse
Affiliation(s)
- Jérémy Di Mattia
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Mathilde Villegas
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | | - Jean-Louis Zeddam
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- UMR IPME, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Stéphane Blanc
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Li P, Wang S, Zhang L, Qiu D, Zhou X, Guo L. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. SCIENCE ADVANCES 2020; 6:eaay9634. [PMID: 32284975 PMCID: PMC7138691 DOI: 10.1126/sciadv.aay9634] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 05/27/2023]
Abstract
Here, we describe a tripartite circular single-stranded (ss) DNA mycovirus, named Fusarium graminearum gemytripvirus 1 (FgGMTV1). The genome of FgGMTV1 comprises three circular ssDNA segments (DNA-A, DNA-B, and DNA-C). Sequence alignments and phylogenetic analyses showed that FgGMTV1 is nested within the family Genomoviridae. We also constructed the first infectious DNA clones of a DNA mycovirus. Our results show that DNA-A and DNA-B are mutually interdependent for their replication and are associated with severely reduced colony growth and hypovirulence. DNA-C relies on DNA-A and DNA-B for replication and is necessary for the recovery of abnormal fungal phenotypes. DNA-C also enhances the accumulation of viral DNA in infected fungi and permits stable colonization and easy transmission via conidia. This is the first multipartite DNA virus isolated from a fungus. Our phylogenetic analyses also suggest that the multipartite genome of FgGMTV1 may have evolved from a monopartite genome of an ancient genomovirus.
Collapse
|
15
|
Zhang YJ, Wu ZX, Holme P, Yang KC. Advantage of Being Multicomponent and Spatial: Multipartite Viruses Colonize Structured Populations with Lower Thresholds. PHYSICAL REVIEW LETTERS 2019; 123:138101. [PMID: 31697512 DOI: 10.1103/physrevlett.123.138101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 06/10/2023]
Abstract
Multipartite viruses have a genome divided into different disconnected viral particles. A majority of multipartite viruses infect plants; very few target animals. To understand why, we use a simple, network-based susceptible-latent-infectious-recovered model. We show both analytically and numerically that, provided that the average degree of the contact network exceeds a critical value, even in the absence of an explicit microscopic advantage, multipartite viruses have a lower threshold to colonizing network-structured populations compared to a well-mixed population. We further corroborate this finding on two-dimensional lattice networks, which better represent the typical contact structures of plants.
Collapse
Affiliation(s)
- Yi-Jiao Zhang
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Petter Holme
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kai-Cheng Yang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
16
|
Sicard A, Pirolles E, Gallet R, Vernerey MS, Yvon M, Urbino C, Peterschmitt M, Gutierrez S, Michalakis Y, Blanc S. A multicellular way of life for a multipartite virus. eLife 2019; 8:43599. [PMID: 30857590 PMCID: PMC6414197 DOI: 10.7554/elife.43599] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.
Collapse
Affiliation(s)
- Anne Sicard
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Romain Gallet
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cica Urbino
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Peterschmitt
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Serafin Gutierrez
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Valdano E, Manrubia S, Gómez S, Arenas A. Endemicity and prevalence of multipartite viruses under heterogeneous between-host transmission. PLoS Comput Biol 2019; 15:e1006876. [PMID: 30883545 PMCID: PMC6438571 DOI: 10.1371/journal.pcbi.1006876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 02/17/2019] [Indexed: 01/29/2023] Open
Abstract
Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is segmented into two or more parts, and encapsidated in separate particles that appear to propagate independently. Completing the replication cycle, however, requires the full genome, so that a systemic infection of a host requires the concurrent presence of several particles. This represents an apparent evolutionary drawback of multipartitism, while its advantages remain unclear. A transition from monopartite to multipartite viral forms has been described in vitro under conditions of high multiplicity of infection, suggesting that cooperation between defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is unknown how the putative advantages that multipartitism might enjoy at the microscopic level affect its epidemiology, or if an explicit advantange is needed to explain its ecological persistence. In order to disentangle which mechanisms might contribute to the rise and fixation of multipartitism, we here investigate the interaction between viral spreading dynamics and host population structure. We set up a compartmental model of the spread of a virus in its different forms and explore its epidemiology using both analytical and numerical techniques. We uncover that the impact of host contact structure on spreading dynamics entails a rich phenomenology of ecological relationships that includes cooperation, competition, and commensality. Furthermore, we find out that multipartitism might rise to fixation even in the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize environments that could not be invaded by the monopartite form, while homogeneous contacts between hosts facilitate its spread. We conjecture that these features might have led to an increase in the diversity and prevalence of multipartite viral forms concomitantly with the expansion of agricultural practices.
Collapse
Affiliation(s)
- Eugenio Valdano
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Sergio Gómez
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alex Arenas
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
18
|
Affiliation(s)
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
19
|
Sato Y, Castón JR, Suzuki N. The biological attributes, genome architecture and packaging of diverse multi-component fungal viruses. Curr Opin Virol 2018; 33:55-65. [DOI: 10.1016/j.coviro.2018.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
|
20
|
Population bottlenecks in multicomponent viruses: first forays into the uncharted territory of genome-formula drift. Curr Opin Virol 2018; 33:184-190. [DOI: 10.1016/j.coviro.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
|
21
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
22
|
Lucía-Sanz A, Aguirre J, Manrubia S. Theoretical approaches to disclosing the emergence and adaptive advantages of multipartite viruses. Curr Opin Virol 2018; 33:89-95. [PMID: 30121469 DOI: 10.1016/j.coviro.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
Multipartite viruses have a segmented genome encapsidated in different viral particles that, in principle, propagate independently. Current empirical knowledge on the molecular, ecological and evolutionary features underlying the very existence of multipartitism is fragmented and puzzling. Although it is generally assumed that multipartitism is viable only when propagation occurs at high multiplicity of infection, evidence indicates that severe population bottlenecks are common. Mathematical models aimed at describing the dynamics of multipartite viruses typically assign an advantage to the multipartite form to compensate for the cost of high multiplicity of infection. Since progress in the theoretical understanding of the evolutionary ecology of multipartitism is strongly conditioned by empirical advances, both aspects are jointly revised in this contribution.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Jacobo Aguirre
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Susanna Manrubia
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| |
Collapse
|
23
|
Sanjuán R. Collective properties of viral infectivity. Curr Opin Virol 2018; 33:1-6. [PMID: 30015082 DOI: 10.1016/j.coviro.2018.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity of infection at the cellular level, including direct cell-to-cell viral transfer, encapsulation of multiple virions in microvesicles or other intercellular vehicles, virion aggregation, and virion binding to microbiota. In turn, increasing the multiplicity of infection could favor the evolution of defective viruses, hence modifying the fitness value of these spread modes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València 46980, Spain.
| |
Collapse
|
24
|
Leeks A, Segredo-Otero EA, Sanjuán R, West SA. Beneficial coinfection can promote within-host viral diversity. Virus Evol 2018; 4:vey028. [PMID: 30288300 PMCID: PMC6166523 DOI: 10.1093/ve/vey028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many viral infections, a large number of different genetic variants can coexist within a host, leading to more virulent infections that are better able to evolve antiviral resistance and adapt to new hosts. But how is this diversity maintained? Why do faster-growing variants not outcompete slower-growing variants, and erode this diversity? One hypothesis is if there are mutually beneficial interactions between variants, with host cells infected by multiple different viral genomes producing more, or more effective, virions. We modelled this hypothesis with both mathematical models and simulations, and found that moderate levels of beneficial coinfection can maintain high levels of coexistence, even when coinfection is relatively rare, and when there are significant fitness differences between competing variants. Rare variants are more likely to be coinfecting with a different variant, and hence beneficial coinfection increases the relative fitness of rare variants through negative frequency dependence, and maintains diversity. We further find that coexisting variants sometimes reach unequal frequencies, depending on the extent to which different variants benefit from coinfection, and the ratio of variants which leads to the most productive infected cells. These factors could help drive the evolution of defective interfering particles, and help to explain why the different segments of multipartite viruses persist at different equilibrium frequencies.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, UK
| | - Ernesto A Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Small Bottleneck Size in a Highly Multipartite Virus during a Complete Infection Cycle. J Virol 2018; 92:JVI.00139-18. [PMID: 29720515 DOI: 10.1128/jvi.00139-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023] Open
Abstract
Multipartite viruses package their genomic segments independently and thus incur the risk of being unable to transmit their entire genome during host-to-host transmission if they undergo severe bottlenecks. In this paper, we estimated the bottleneck size during one infection cycle of Faba bean necrotic stunt virus (FBNSV), an octopartite nanovirus whose segments have been previously shown to converge to particular and unequal relative frequencies within host plants and aphid vectors. Two methods were used to derive this estimate, one based on the probability of transmission of the virus and the other based on the temporal evolution of the relative frequency of markers for two genomic segments, one frequent and one rare (segment N and S, respectively), both in plants and vectors. Our results show that FBNSV undergoes severe bottlenecks during aphid transmission. Further, even though the bottlenecks are always narrow under our experimental conditions, they slightly widen with the number of transmitting aphids. In particular, when several aphids are used for transmission, the bottleneck size of the segments is also affected by within-plant processes and, importantly, significantly differs across segments. These results indicate that genetic drift not only must be an important process affecting the evolution of these viruses but also that these effects vary across genomic segments and, thus, across viral genes, a rather unique and intriguing situation. We further discuss the potential consequences of our findings for the transmission of multipartite viruses.IMPORTANCE Multipartite viruses package their genomic segments in independent capsids. The most obvious cost of such genomic structure is the risk of losing at least one segment during host-to-host transmission. A theoretical study has shown that for nanoviruses, composed of 6 to 8 segments, hundreds of copies of each segment need to be transmitted to ensure that at least one copy of each segment was present in the host. These estimations seem to be very high compared to the size of the bottlenecks measured with other viruses. Here, we estimated the bottleneck size during one infection cycle of FBNSV, an octopartite nanovirus. We show that these bottlenecks are always narrow (few viral particles) and slightly widen with the number of transmitting aphids. These results contrast with theoretical predictions and illustrate the fact that a new conceptual framework is probably needed to understand the transmission of highly multipartite viruses.
Collapse
|
26
|
Lucía-Sanz A, Manrubia S. Multipartite viruses: adaptive trick or evolutionary treat? NPJ Syst Biol Appl 2017; 3:34. [PMID: 29263796 PMCID: PMC5680193 DOI: 10.1038/s41540-017-0035-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Multipartitism counts amongst the weirdest lifestyles found in the virosphere. Multipartite viruses have genomes segmented in pieces enclosed in different capsids that are independently transmitted. Since all segments have to meet in the host for complementation and completion of the viral cycle, multipartite viruses are bound to fight the loss of genomic information. While this is an obvious disadvantage of this strategy, no consensus on its actual advantages has been reached. In this review we present an exhaustive summary of all multipartite viruses described to date. Based on evidence, we discuss possible mechanistic and evolutionary origins of different groups, as well as their mutual relationships. We argue that the ubiquitous interactions of viruses with other unrelated viruses and with subviral elements might be regarded as a plausible first step towards multipartitism. In agreement with the view of the Virosphere as a deeply entangled network of gene sharing, we contend that the power of multipartitism relies on its dynamical and opportunistic nature, because it enables immediate adaptive responses to environmental changes. As such, perhaps the reasons for its success should be shought in multipartitism itself as an adaptive mechanism, to which its evolutionarily short-lived products (that is, the extant ensemble of multipartite viral species) are subordinated. We close by discussing how our understanding of multipartitism would improve by using concepts and tools from systems biology. The faithful transmission of the genome of an organism is a fundamental step to preserve information essential for survivability. However, multipartite viruses thrive with segmented genomes that propagate in independent viral particles. Though this adaptive strategy appears as counterintuitive and suboptimal, multipartitism is common in the viral world and has very likely arisen several times. Here we review the distribution and abundance of multipartite viruses and discuss possible evolutionary pathways for their emergence. Though no clear advantage of multipartitism has been identified, we suggest that the high prevalence of this strategy relies on its dynamic and opportunistic nature, and that it can only be understood in an ecological context. A systems biology perspective could help understanding some of the open questions regarding this weird lifestyle, while multipartitism could in turn inspire design principles based on the simultaneous exploration of an exploding number of transient collaborative associations.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
27
|
Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Sci Rep 2017; 7:5004. [PMID: 28694514 PMCID: PMC5504059 DOI: 10.1038/s41598-017-05335-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of coadapted genes associated with encapsidating each segment into a different particle. Advantages range from increasing genome size despite high mutation rates, faster replication, more efficient selection resulting from reassortment during mixed infections, better regulation of gene expression, or enhanced virion stability and cell-to-cell movement. However, support for these hypotheses is scarce. Here we report experiments testing whether an evolutionary stable equilibrium exists for the three genomic RNAs of Alfalfa mosaic virus (AMV). Starting infections with different segment combinations, we found that the relative abundance of each segment evolves towards a constant ratio. Population genetic analyses show that the segment ratio at this equilibrium is determined by frequency-dependent selection. Replication of RNAs 1 and 2 was coupled and collaborative, whereas the replication of RNA 3 interfered with the replication of the other two. We found that the equilibrium solution is slightly different for the total amounts of RNA produced and encapsidated, suggesting that competition exists between all RNAs during encapsidation. Finally, we found that the observed equilibrium appears to be host-species dependent.
Collapse
Affiliation(s)
- Beilei Wu
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Valencia, Spain.
- The Santa Fe Institute, New Mexico, USA.
| |
Collapse
|
28
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing. PLoS One 2017; 12:e0179284. [PMID: 28632759 PMCID: PMC5478126 DOI: 10.1371/journal.pone.0179284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Narelle Nancarrow
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Moury B, Fabre F, Hébrard E, Froissart R. Determinants of host species range in plant viruses. J Gen Virol 2017; 98:862-873. [PMID: 28475036 DOI: 10.1099/jgv.0.000742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Collapse
Affiliation(s)
- Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | - Frédéric Fabre
- UMR 1065, Santé et Agroécologie du Vignoble, INRA, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, F-33883 Villenave d'Ornon, France
| | - Eugénie Hébrard
- UMR186, IRD-Cirad-UM, Laboratory 'Interactions Plantes Microorganismes Environnement', Montpellier, France
| | - Rémy Froissart
- UMR5290, CNRS-IRD-UM1-UM2, Laboratory 'Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle', Montpellier, France.,UMR385, INRA-Cirad-SupAgro, Laboratory 'Biologie des Interactions Plantes-Parasites', Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
30
|
Collective Infectious Units in Viruses. Trends Microbiol 2017; 25:402-412. [PMID: 28262512 DOI: 10.1016/j.tim.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
Abstract
Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These may include various forms of cooperation such as immunity evasion, genetic complementation, division of labor, and relaxation of fitness trade-offs, but also noncooperative interactions such as negative dominance and interference, potentially leading to conflict.
Collapse
|
31
|
Taylor BP, Penington CJ, Weitz JS. Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts. Phys Biol 2017; 13:066014. [DOI: 10.1088/1478-3975/13/6/066014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
33
|
Zwart MP, Elena SF. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu Rev Virol 2016; 2:161-79. [PMID: 26958911 DOI: 10.1146/annurev-virology-100114-055135] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For virus infections of multicellular hosts, narrow genetic bottlenecks during transmission and within-host spread appear to be widespread. These bottlenecks will affect the maintenance of genetic variation in a virus population and the prevalence of mixed-strain infections, thereby ultimately determining the strength with which different random forces act during evolution. Here we consider different approaches for estimating bottleneck sizes and weigh their merits. We then review quantitative estimates of bottleneck size during cellular infection, within-host spread, horizontal transmission, and finally vertical transmission. In most cases we find that bottlenecks do regularly occur, although in many cases they appear to be virion-concentration dependent. Finally, we consider the evolutionary implications of genetic bottlenecks during virus infection. Although on average strong bottlenecks will lead to declines in fitness, we consider a number of scenarios in which bottlenecks could also be advantageous for viruses.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany;
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
34
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
35
|
Nee S. The evolutionary ecology of molecular replicators. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160235. [PMID: 27853598 PMCID: PMC5108948 DOI: 10.1098/rsos.160235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/01/2016] [Indexed: 05/12/2023]
Abstract
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.
Collapse
Affiliation(s)
- Sean Nee
- Author for correspondence: Sean Nee e-mail:
| |
Collapse
|
36
|
van de Waterbeemd M, Snijder J, Tsvetkova IB, Dragnea BG, Cornelissen JJ, Heck AJR. Examining the Heterogeneous Genome Content of Multipartite Viruses BMV and CCMV by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1000-9. [PMID: 26926442 PMCID: PMC4869746 DOI: 10.1007/s13361-016-1348-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 05/09/2023]
Abstract
Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan G Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Jeroen J Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
37
|
Hu Z, Zhang X, Liu W, Zhou Q, Zhang Q, Li G, Yao Q. Genome segments accumulate with different frequencies inBombyx mori bidensovirus. J Basic Microbiol 2016; 56:1338-1343. [DOI: 10.1002/jobm.201600120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaoyang Hu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Xiaolong Zhang
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Wei Liu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Qian Zhou
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Qing Zhang
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Guohui Li
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Qin Yao
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu P.R. China
| |
Collapse
|
38
|
Getting to Know Viral Evolutionary Strategies: Towards the Next Generation of Quasispecies Models. Curr Top Microbiol Immunol 2015; 392:201-17. [PMID: 26271604 DOI: 10.1007/82_2015_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral populations are formed by complex ensembles of genomes with broad phenotypic diversity. The adaptive strategies deployed by these ensembles are multiple and often cannot be predicted a priori. Our understanding of viral dynamics is mostly based on two kinds of empirical approaches: one directed towards characterizing molecular changes underlying fitness changes and another focused on population-level responses. Simultaneously, theoretical efforts are directed towards developing a formal picture of viral evolution by means of more realistic fitness landscapes and reliable population dynamics models. New technologies, chiefly the use of next-generation sequencing and related tools, are opening avenues connecting the molecular and the population levels. In the near future, we hope to be witnesses of an integration of these still decoupled approaches, leading into more accurate and realistic quasispecies models able to capture robust generalities and endowed with a satisfactory predictive power.
Collapse
|
39
|
A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc Natl Acad Sci U S A 2014; 111:6744-9. [PMID: 24753611 DOI: 10.1073/pnas.1324194111] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus--Jingmen tick virus (JMTV)--that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors.
Collapse
|
40
|
Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Sci Rep 2014; 4:4625. [PMID: 24713667 PMCID: PMC3980229 DOI: 10.1038/srep04625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/21/2014] [Indexed: 11/08/2022] Open
Abstract
The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.
Collapse
|
41
|
Sánchez-Navarro JA, Zwart MP, Elena SF. Effects of the number of genome segments on primary and systemic infections with a multipartite plant RNA virus. J Virol 2013; 87:10805-15. [PMID: 23903837 PMCID: PMC3807391 DOI: 10.1128/jvi.01402-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/06/2023] Open
Abstract
Multipartite plant viruses were discovered because of discrepancies between the observed dose response and predictions of the independent-action hypothesis (IAH) model. Theory suggests that the number of genome segments predicts the shape of the dose-response curve, but a rigorous test of this hypothesis has not been reported. Here, Alfalfa mosaic virus (AMV), a tripartite Alfamovirus, and transgenic Nicotianatabacum plants expressing no (wild type), one (P2), or two (P12) viral genome segments were used to test whether the number of genome segments necessary for infection predicts the dose response. The dose-response curve of wild-type plants was steep and congruent with the predicted kinetics of a multipartite virus, confirming previous results. Moreover, for P12 plants, the data support the IAH model, showing that the expression of virus genome segments by the host plant can modulate the infection kinetics of a tripartite virus to those of a monopartite virus. However, the different types of virus particles occurred at different frequencies, with a ratio of 116:45:1 (RNA1 to RNA2 to RNA3), which will affect infection kinetics and required analysis with a more comprehensive infection model. This analysis showed that each type of virus particle has a different probability of invading the host plant, at both the primary- and systemic-infection levels. While the number of genome segments affects the dose response, taking into consideration differences in the infection kinetics of the three types of AMV particles results in a better understanding of the infection process.
Collapse
Affiliation(s)
- Jesús A. Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
42
|
Gene copy number is differentially regulated in a multipartite virus. Nat Commun 2013; 4:2248. [DOI: 10.1038/ncomms3248] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
|
43
|
Modelling viral evolution and adaptation: challenges and rewards. Curr Opin Virol 2012; 2:531-7. [DOI: 10.1016/j.coviro.2012.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/25/2012] [Indexed: 01/28/2023]
|
44
|
Perales C, Iranzo J, Manrubia SC, Domingo E. The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 2012; 20:595-603. [PMID: 22989762 DOI: 10.1016/j.tim.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/31/2023]
Abstract
The application of quasispecies theory to viral populations has boosted our understanding of how endogenous and exogenous features condition their adaptation. Mounting empirical evidence demonstrates that internal interactions within mutant spectra may cause unexpected responses to antiviral treatments. In this scenario, increased mutagenesis could be efficient at low mutagen doses due to the lethal action of defective genomes, whereas sequential administration of antiviral drugs might be superior to combination therapies. Our ability to predict the outcome of a particular therapy takes advantage of the complementary use of in vivo observations, in vitro experiments, and mathematical models.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco 28049, Madrid, Spain
| | | | | | | |
Collapse
|