1
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
2
|
Bai WF, Lin ZG, Yan WY, Zhang LZ, Evans JD, Huang Q. Haplotype Analysis of Varroa destructor and Deformed Wing Virus Using Long Reads. FRONTIERS IN INSECT SCIENCE 2021; 1:756886. [PMID: 38468896 PMCID: PMC10926369 DOI: 10.3389/finsc.2021.756886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 03/13/2024]
Abstract
As a phoretic parasite and virus vector, the mite Varroa destructor and the associated Deformed wing virus (DWV) form a lethal combination to the honey bee, Apis mellifera. Routine acaricide treatment has been reported to reduce the diversity of mites and select for tolerance against these treatments. Further, different DWV strains face selective pressures when transmitted via mites. In this study, the haplotypes of Varroa mites and associated DWV variants were quantified using long reads. A single haplotype dominated the mite mitochondrial gene cytochrome oxidase subunit I, reflecting an ancient bottleneck. However, highly polymorphic genes were present across the mite genome, suggesting the diversity of mites could be actively maintained at a regional level. DWV detected in both mites and honey bees show a dominant variant with only a few low-frequency alternate haplotypes. The relative abundances of DWV haplotypes isolated from honey bees and mites were highly consistent, suggesting that some variants are favored by ongoing selection.
Collapse
Affiliation(s)
- Wen Feng Bai
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhe Guang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Aubier TG, Galipaud M, Erten EY, Kokko H. Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biol 2020; 18:e3000916. [PMID: 33211684 PMCID: PMC7676742 DOI: 10.1371/journal.pbio.3000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The predominance of sexual reproduction in eukaryotes remains paradoxical in evolutionary theory. Of the hypotheses proposed to resolve this paradox, the 'Red Queen hypothesis' emphasises the potential of antagonistic interactions to cause fluctuating selection, which favours the evolution and maintenance of sex. Whereas empirical and theoretical developments have focused on host-parasite interactions, the premises of the Red Queen theory apply equally well to any type of antagonistic interactions. Recently, it has been suggested that early multicellular organisms with basic anticancer defences were presumably plagued by antagonistic interactions with transmissible cancers and that this could have played a pivotal role in the evolution of sex. Here, we dissect this argument using a population genetic model. One fundamental aspect distinguishing transmissible cancers from other parasites is the continual production of cancerous cell lines from hosts' own tissues. We show that this influx dampens fluctuating selection and therefore makes the evolution of sex more difficult than in standard Red Queen models. Although coevolutionary cycling can remain sufficient to select for sex under some parameter regions of our model, we show that the size of those regions shrinks once we account for epidemiological constraints. Altogether, our results suggest that horizontal transmission of cancerous cells is unlikely to cause fluctuating selection favouring sexual reproduction. Nonetheless, we confirm that vertical transmission of cancerous cells can promote the evolution of sex through a separate mechanism, known as similarity selection, that does not depend on coevolutionary fluctuations.
Collapse
Affiliation(s)
- Thomas G. Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthias Galipaud
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Evolutionary rescue of a parasite population by mutation rate evolution. Theor Popul Biol 2017; 117:64-75. [DOI: 10.1016/j.tpb.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
|
5
|
Gupta A, LaBar T, Miyagi M, Adami C. Evolution of Genome Size in Asexual Digital Organisms. Sci Rep 2016; 6:25786. [PMID: 27181837 PMCID: PMC4867773 DOI: 10.1038/srep25786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution. Specifically, it is not clear how the primordial mutational processes of base substitutions, insertions, and deletions influence genome size evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we find that mutation rate is inversely correlated with genome size in asexual populations. We show that at low point mutation rate, insertions are significantly more beneficial than deletions, driving genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress their genetic information. Our analyses suggest that the inverse relationship between mutation rate and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the mutational load.
Collapse
Affiliation(s)
- Aditi Gupta
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas LaBar
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Miyagi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Christoph Adami
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Greenspoon PB, M'Gonigle LK. Host-parasite interactions and the evolution of nonrandom mating. Evolution 2014; 68:3570-80. [PMID: 25314225 DOI: 10.1111/evo.12538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
Some species mate nonrandomly with respect to alleles underlying immunity. One hypothesis proposes that this is advantageous because nonrandom mating can lead to offspring with superior parasite resistance. We investigate this hypothesis, generalizing previous models in four ways: First, rather than only examining invasibility of modifiers of nonrandom mating, we identify evolutionarily stable strategies. Second, we study coevolution of both haploid and diploid hosts and parasites. Third, we allow for maternal parasite transmission. Fourth, we allow for many alleles at the interaction locus. We find that evolutionarily stable rates of assortative or disassortative mating are usually near zero or one. However, for one case, in which assumptions most closely match the major histocompatibility complex (MHC) system, intermediate rates of disassortative mating can evolve. Across all cases, with haploid hosts, evolution proceeds toward complete disassortative mating, whereas with diploid hosts either assortative or disassortative mating can evolve. Evolution of nonrandom mating is much less affected by the ploidy of parasites. For the MHC case, maternal transmission of parasites, because it creates an advantage to producing offspring that differ from their parents, leads to higher evolutionarily stable rates of disassortative mating. Lastly, with more alleles at the interaction locus, disassortative mating evolves to higher levels.
Collapse
|