1
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
2
|
Deforet M. Long-range alteration of the physical environment mediates cooperation between Pseudomonas aeruginosa swarming colonies. Environ Microbiol 2023. [PMID: 36964975 DOI: 10.1111/1462-2920.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Pseudomonas aeruginosa makes and secretes massive amounts of rhamnolipid surfactants that enable swarming motility over biogel surfaces. But how these rhamnolipids interact with biogels to assist swarming remains unclear. Here, I use a combination of optical techniques across scales and genetically engineered strains to demonstrate that rhamnolipids can induce agar gel swelling over distances >10,000× the body size of an individual cell. The swelling front is on the micrometric scale and is easily visible using shadowgraphy. Rhamnolipid transport is not restricted to the surface of the gel but occurs through the whole thickness of the plate and, consequently, the spreading dynamics depend on the local thickness. Surprisingly, rhamnolipids can cross the whole gel and induce swelling on the opposite side of a two-face Petri dish. The swelling front delimits an area where the mechanical properties of the surface properties are modified: water wets the surface more easily, which increases the motility of individual bacteria and enables collective motility. A genetically engineered mutant unable to secrete rhamnolipids (ΔrhlA), and therefore unable to swarm, is rescued from afar with rhamnolipids produced by a remote colony. These results exemplify the remarkable capacity of bacteria to change the physical environment around them and its ecological consequences.
Collapse
Affiliation(s)
- Maxime Deforet
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, LJP, Paris, 75005, France
| |
Collapse
|
3
|
Williams MA, Bouchier JM, Mason AK, Brown PJB. Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens. PLoS Genet 2022; 18:e1010274. [PMID: 36480495 PMCID: PMC9731437 DOI: 10.1371/journal.pgen.1010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with β-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.
Collapse
Affiliation(s)
- Michelle A. Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Jacob M. Bouchier
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Amara K. Mason
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
4
|
Alías-Villegas C, Fuentes-Romero F, Cuéllar V, Navarro-Gómez P, Soto MJ, Vinardell JM, Acosta-Jurado S. Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators. Int J Mol Sci 2022; 23:7698. [PMID: 35887044 PMCID: PMC9316994 DOI: 10.3390/ijms23147698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.
Collapse
Affiliation(s)
- Cynthia Alías-Villegas
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Francisco Fuentes-Romero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - Pilar Navarro-Gómez
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - María J. Soto
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - José-María Vinardell
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| |
Collapse
|
5
|
Frequency modulation of a bacterial quorum sensing response. Nat Commun 2022; 13:2772. [PMID: 35589697 PMCID: PMC9120067 DOI: 10.1038/s41467-022-30307-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
In quorum sensing, bacteria secrete or release small molecules into the environment that, once they reach a certain threshold, trigger a behavioural change in the population. As the concentration of these so-called autoinducers is supposed to reflect population density, they were originally assumed to be continuously produced by all cells in a population. However, here we show that in the α-proteobacterium Sinorhizobium meliloti expression of the autoinducer synthase gene is realized in asynchronous stochastic pulses that result from scarcity and, presumably, low binding affinity of the key activator. Physiological cues modulate pulse frequency, and pulse frequency in turn modulates the velocity with which autoinducer levels in the environment reach the threshold to trigger the quorum sensing response. We therefore propose that frequency-modulated pulsing in S. meliloti represents the molecular mechanism for a collective decision-making process in which each cell's physiological state and need for behavioural adaptation is encoded in the pulse frequency with which it expresses the autoinducer synthase gene; the pulse frequencies of all members of the population are then integrated in the common pool of autoinducers, and only once this vote crosses the threshold, the response behaviour is initiated.
Collapse
|
6
|
Capillary bacterial migration on non-nutritive solid surfaces. Arh Hig Rada Toksikol 2020; 71:251-260. [PMID: 33074174 PMCID: PMC7968502 DOI: 10.2478/aiht-2020-71-3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 12/04/2022] Open
Abstract
Here we describe an additional type of bacterial migration in which bacterial cells migrate vertically across a non-nutritive solid surface carried by capillary forces. Unlike standard motility experiments, these were run on a glass slide inserted into a Falcon tube, partly immersed in a nutrient medium and partly exposed to air. Observations revealed that capillary forces initiated upward cell migration when biofilm was formed at the border between liquid and air. The movement was facilitated by the production of extracellular polymeric substances (EPS). This motility differs from earlier described swarming, twitching, gliding, sliding, or surfing, although these types of movements are not excluded. We therefore propose to call it “capillary movement of biofilm”. This phenomenon may be an ecologically important mode of bacterial motility on solid surfaces.
Collapse
|
7
|
Xiong L, Cao Y, Cooper R, Rappel WJ, Hasty J, Tsimring L. Flower-like patterns in multi-species bacterial colonies. eLife 2020; 9:e48885. [PMID: 31933477 PMCID: PMC6959979 DOI: 10.7554/elife.48885] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
Diverse interactions among species within bacterial colonies lead to intricate spatiotemporal dynamics, which can affect their growth and survival. Here, we describe the emergence of complex structures in a colony grown from mixtures of motile and non-motile bacterial species on a soft agar surface. Time-lapse imaging shows that non-motile bacteria 'hitchhike' on the motile bacteria as the latter migrate outward. The non-motile bacteria accumulate at the boundary of the colony and trigger an instability that leaves behind striking flower-like patterns. The mechanism of the front instability governing this pattern formation is elucidated by a mathematical model for the frictional motion of the colony interface, with friction depending on the local concentration of the non-motile species. A more elaborate two-dimensional phase-field model that explicitly accounts for the interplay between growth, mechanical stress from the motile species, and friction provided by the non-motile species, fully reproduces the observed flower-like patterns.
Collapse
Affiliation(s)
- Liyang Xiong
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
- BioCircuits InstituteUniversity of California, San DiegoLa JollaUnited States
| | - Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Robert Cooper
- BioCircuits InstituteUniversity of California, San DiegoLa JollaUnited States
| | - Wouter-Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Jeff Hasty
- BioCircuits InstituteUniversity of California, San DiegoLa JollaUnited States
- The San Diego Center for Systems BiologySan DiegoUnited States
- Molecular Biology Section, Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
- Department of BioengineeringUniversity of California, San DiegoLa JollaUnited States
| | - Lev Tsimring
- BioCircuits InstituteUniversity of California, San DiegoLa JollaUnited States
- The San Diego Center for Systems BiologySan DiegoUnited States
| |
Collapse
|
8
|
McIntosh M, Serrania J, Lacanna E. A novel LuxR-type solo of Sinorhizobium meliloti, NurR, is regulated by the chromosome replication coordinator, DnaA and activates quorum sensing. Mol Microbiol 2019; 112:678-698. [PMID: 31124196 DOI: 10.1111/mmi.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
The genome of Sinorhizobium meliloti, a model for studying plant-bacteria symbiosis, contains eight genes coding for LuxR-like proteins. Two of these, SinR and ExpR, are essential for quorum sensing (QS). Roles and regulation surrounding the others are mostly unknown. Here, we reveal the DNA recognition sequence and regulon of the LuxR-like protein SMc00877. Unlike ExpR, which uses the long-chain acyl homoserine lactones (AHLs) as inducers, SMc00877 functioned independently of AHLs and was even functional in Escherichia coli. A target of SMc00877 is SinR, the major regulator of AHL production in S. meliloti. Disruption of SMc00877 decreased AHL production. A weaker production of AHLs resulted in smaller microcolonies, starting from single cells, and delayed AHL-dependent regulation. SMc00877 was expressed only in growing cells in the presence of replete nutrients. Therefore, we renamed it NurR (nutrient sensitive LuxR-like regulator). We traced this nutrient-sensitive expression to transcription control by the DNA replication initiation factor, DnaA, which is essential for growth. These results indicate that NurR has a role in modulating the threshold of QS activation according to growth. We propose growth behavior as an additional prerequisite to population density for the activation of QS in S. meliloti.
Collapse
Affiliation(s)
- Matthew McIntosh
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Egidio Lacanna
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
9
|
Trinschek S, John K, Thiele U. Modelling of surfactant-driven front instabilities in spreading bacterial colonies. SOFT MATTER 2018; 14:4464-4476. [PMID: 29796452 DOI: 10.1039/c8sm00422f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The spreading of bacterial colonies at solid-air interfaces is determined by the physico-chemical properties of the involved interfaces. The production of surfactant molecules by bacteria is a widespread strategy that allows the colony to efficiently expand over the substrate. On the one hand, surfactant molecules lower the surface tension of the colony, effectively increasing the wettability of the substrate, which facilitates spreading. On the other hand, gradients in the surface concentration of surfactant molecules result in Marangoni flows that drive spreading. These flows may cause an instability of the circular colony shape and the subsequent formation of fingers. In this work, we study the effect of bacterial surfactant production and substrate wettability on colony growth and shape within the framework of a hydrodynamic thin film model. We show that variations in the wettability and surfactant production are sufficient to reproduce four different types of colony growth, which have been described in the literature, namely, arrested and continuous spreading of circular colonies, slightly modulated front lines and the formation of pronounced fingers.
Collapse
Affiliation(s)
- Sarah Trinschek
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany.
| | | | | |
Collapse
|
10
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
11
|
Mukherjee M, Ghosh P. Growth-mediated autochemotactic pattern formation in self-propelling bacteria. Phys Rev E 2018; 97:012413. [PMID: 29448366 DOI: 10.1103/physreve.97.012413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Collapse
Affiliation(s)
| | - Pushpita Ghosh
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
12
|
Trinschek S, John K, Lecuyer S, Thiele U. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces. PHYSICAL REVIEW LETTERS 2017; 119:078003. [PMID: 28949685 DOI: 10.1103/physrevlett.119.078003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/07/2023]
Abstract
We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.
Collapse
Affiliation(s)
- Sarah Trinschek
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Karin John
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Sigolène Lecuyer
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
13
|
Calatrava-Morales N, Nogales J, Ameztoy K, van Steenbergen B, Soto MJ. The NtrY/NtrX System of Sinorhizobium meliloti GR4 Regulates Motility, EPS I Production, and Nitrogen Metabolism but Is Dispensable for Symbiotic Nitrogen Fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:566-577. [PMID: 28398840 DOI: 10.1094/mpmi-01-17-0021-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sinorhizobium meliloti can translocate over surfaces. However, little is known about the regulatory mechanisms that control this trait and its relevance for establishing symbiosis with alfalfa plants. To gain insights into this field, we isolated Tn5 mutants of S. meliloti GR4 with impaired surface motility. In mutant strain GRS577, the transposon interrupted the ntrY gene encoding the sensor kinase of the NtrY/NtrX two-component regulatory system. GRS577 is impaired in flagella synthesis and overproduces succinoglycan, which is responsible for increased biofilm formation. The mutant also shows altered cell morphology and higher susceptibility to salt stress. GRS577 induces nitrogen-fixing nodules in alfalfa but exhibits decreased competitive nodulation. Complementation experiments indicate that both ntrY and ntrX account for all the phenotypes displayed by the ntrY::Tn5 mutant. Ectopic overexpression of VisNR, the motility master regulator, was sufficient to rescue motility and competitive nodulation of the transposant. A transcriptome profiling of GRS577 confirmed differential expression of exo and flagellar genes, and led to the demonstration that NtrY/NtrX allows for optimal expression of denitrification and nifA genes under microoxic conditions in response to nitrogen compounds. This study extends our knowledge of the complex role played by NtrY/NtrX in S. meliloti.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Kinia Ameztoy
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Bart van Steenbergen
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - María J Soto
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
14
|
Bernabéu-Roda L, Calatrava-Morales N, Cuéllar V, Soto MJ. Characterization of surface motility in Sinorhizobium meliloti: regulation and role in symbiosis. Symbiosis 2015. [DOI: 10.1007/s13199-015-0340-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Mechanically-driven phase separation in a growing bacterial colony. Proc Natl Acad Sci U S A 2015; 112:E2166-73. [PMID: 25870260 DOI: 10.1073/pnas.1504948112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secretion of extracellular polymeric substances (EPSs) by growing bacteria is an integral part of forming biofilm-like structures. In such dense systems, mechanical interactions among the structural components can be expected to significantly contribute to morphological properties. Here, we use a particle-based modeling approach to study the self-organization of nonmotile rod-shaped bacterial cells growing on a solid substrate in the presence of self-produced EPSs. In our simulation, all of the components interact mechanically via repulsive forces, occurring as the bacterial cells grow and divide (via consuming diffusing nutrient) and produce EPSs. Based on our simulation, we show that mechanical interactions control the collective behavior of the system. In particular, we find that the presence of nonadsorbing EPSs can lead to spontaneous aggregation of bacterial cells by a depletion attraction and thereby generates phase separated patterns in the nonequilibrium growing colony. Both repulsive interactions between cell and EPSs and the overall concentration of EPSs are important factors in the self-organization in a nonequilibrium growing colony. Furthermore, we investigate the interplay of mechanics with the nutrient diffusion and consumption by bacterial cells and observe that suppression of branch formation occurs due to EPSs compared with the case where no EPS is produced.
Collapse
|
16
|
Charoenpanich P, Soto MJ, Becker A, McIntosh M. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:373-382. [PMID: 25534533 DOI: 10.1111/1758-2229.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.
Collapse
Affiliation(s)
- Pornsri Charoenpanich
- LOEWE Center for Synthetic Microbiology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|