1
|
Devilliers J, Marshall H, Warren B, Kyriacou CP, Araripe LO, Bruno RV, Rosato E, Feuda R. Molecular correlates of swarming behaviour in Aedes aegypti males. Biol Lett 2024; 20:20240245. [PMID: 39471837 PMCID: PMC11521606 DOI: 10.1098/rsbl.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Mosquitoes are the deadliest vectors of diseases. They impose a huge health burden on human populations spreading parasites as disparate as protozoans (malaria), viruses (yellow fever and more) and nematodes (filariasis) that cause life-threatening conditions. In recent years, mating has been proposed as a putative target for population control. Mosquitoes mate mid-air, in swarms initiated by males and triggered by a combination of internal and external stimuli. As the number of females in a swarm is limited, there is intense competition among males, and they 'retune' their physiology for this demanding behaviour. There is limited knowledge on the 'genetic reprogramming' required to enable swarming. Interestingly, recent evidence indicates that the upregulation of circadian clock genes may be involved in the swarming of malaria mosquitoes of the genus Anopheles. Here, we use whole-head RNA-seq to identify gene expression changes in Aedes aegypti males that are engaged in swarming in a laboratory setting. Our results suggest that in preparation to swarming, males tend to lower some housekeeping functions while increasing remodelling of the cytoskeleton and neuronal connectivity; the transcription of circadian clock genes is unaffected.
Collapse
Affiliation(s)
- Julien Devilliers
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hollie Marshall
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ben Warren
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Charalambos P. Kyriacou
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Luciana O. Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Rafaela V. Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ezio Rosato
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Roberto Feuda
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Altered laryngeal morphology in Period1 deficient mice. Ann Anat 2019; 223:43-48. [DOI: 10.1016/j.aanat.2019.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
|
3
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory. Neural Plast 2018; 2018:6238989. [PMID: 29849561 PMCID: PMC5925033 DOI: 10.1155/2018/6238989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.
Collapse
|
5
|
Prentice MB, Bowman J, Lalor JL, McKay MM, Thomson LA, Watt CM, McAdam AG, Murray DL, Wilson PJ. Signatures of selection in mammalian clock genes with coding trinucleotide repeats: Implications for studying the genomics of high-pace adaptation. Ecol Evol 2017; 7:7254-7276. [PMID: 28944015 PMCID: PMC5606889 DOI: 10.1002/ece3.3223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Climate change is predicted to affect the reproductive ecology of wildlife; however, we have yet to understand if and how species can adapt to the rapid pace of change. Clock genes are functional genes likely critical for adaptation to shifting seasonal conditions through shifts in timing cues. Many of these genes contain coding trinucleotide repeats, which offer the potential for higher rates of change than single nucleotide polymorphisms (SNPs) at coding sites, and, thus, may translate to faster rates of adaptation in changing environments. We characterized repeats in 22 clock genes across all annotated mammal species and evaluated the potential for selection on repeat motifs in three clock genes (NR1D1,CLOCK, and PER1) in three congeneric species pairs with different latitudinal range limits: Canada lynx and bobcat (Lynx canadensis and L. rufus), northern and southern flying squirrels (Glaucomys sabrinus and G. volans), and white‐footed and deer mouse (Peromyscus leucopus and P. maniculatus). Signatures of positive selection were found in both the interspecific comparison of Canada lynx and bobcat, and intraspecific analyses in Canada lynx. Northern and southern flying squirrels showed differing frequencies at common CLOCK alleles and a signature of balancing selection. Regional excess homozygosity was found in the deer mouse at PER1 suggesting disruptive selection, and further analyses suggested balancing selection in the white‐footed mouse. These preliminary signatures of selection and the presence of trinucleotide repeats within many clock genes warrant further consideration of the importance of candidate gene motifs for adaptation to climate change.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough ON Canada
| | | | - Michelle M McKay
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | | | - Cristen M Watt
- Department of Environmental and Life Sciences Trent University Peterborough ON Canada
| | - Andrew G McAdam
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | | - Paul J Wilson
- Biology Department Trent University Peterborough ON Canada
| |
Collapse
|
6
|
Ashbrook DG, Hager R. Social Interactions and Indirect Genetic Effects on Complex Juvenile and Adult Traits. Methods Mol Biol 2017; 1488:499-517. [PMID: 27933541 DOI: 10.1007/978-1-4939-6427-7_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most animal species are social in one form or another, yet many studies in rodent model systems use either individually housed animals or ignore potential confounds caused by group housing. While such social interaction effects on developmental and behavioral traits are well established, the genetic basis of social interactions has not been researched in as much detail. Specifically, the effects of genetic variation in social partners on the phenotype of a focal individual have mostly been studied at the phenotypic level. Such indirect genetic effects (IGEs), where the genotype of one individual influences the phenotype of a second individual, can have important evolutionary and medically relevant consequences. In this chapter, we give a brief outline of social interaction effects, and how systems genetics approaches using recombinant inbred populations can be used to investigate indirect genetic effects specifically, including maternal genetic effects. We discuss experimental designs for the study of IGEs and show how indirect genetic loci can be identified that underlie social interaction effects, their mechanisms, and consequences for trait variation in focal individuals.
Collapse
Affiliation(s)
- David G Ashbrook
- Dept. of Biological Sciences University of Toronto Scarborough Science Wing, SW3261265 Military Trail, Toronto, ON, M1C, UK
| | - Reinmar Hager
- Department of Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, C1.261 Michael Smith Bldg., Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Rawashdeh O, Jilg A, Maronde E, Fahrenkrug J, Stehle JH. Period1gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem 2016; 138:731-45. [DOI: 10.1111/jnc.13689] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
- School of Biomedical Sciences; University of Queensland; St Lucia Qld Australia
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Erik Maronde
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Jan Fahrenkrug
- Department of Clinical Chemistry; Bispebjerg Hospital, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| |
Collapse
|
8
|
Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 2015; 5:16264. [PMID: 26537429 PMCID: PMC4633681 DOI: 10.1038/srep16264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Animal personality and coping styles are basic concepts for evaluating animal welfare. Struggling response of piglets in so-called backtests early in life reflects their coping strategy. Behavioral reactions of piglets in backtests have a moderate heritability, but their genetic basis largely remains unknown. Here, latency, duration and frequency of struggling attempts during one-minute backtests were repeatedly recorded of piglets at days 5, 12, 19, and 26. A genome-wide association study for backtest traits revealed 465 significant SNPs (FDR ≤ 0.05) mostly located in QTL (quantitative trait locus) regions on chromosome 3, 5, 12 and 16. In order to capture genes in these regions, 37 transcripts with significant SNPs were selected for expressionQTL analysis in the hypothalamus. Eight genes (ASGR1, CPAMD8, CTC1, FBXO39, IL19, LOC100511790, RAD51B, UBOX5) had cis- and five (RANGRF, PER1, PDZRN3, SH2D4B, LONP2) had trans-expressionQTL. In particular, for PER1, with known physiological implications for maintenance of circadian rhythms, a role in coping behavior was evidenced by confirmed association in an independent population. For CTC1 a cis-expression QTL and the consistent relationship of gene polymorphism, mRNA expression level and backtest traits promoted its link to coping style. GWAS and eQTL analyses uncovered positional and functional gene candidates for coping behavior.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
9
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|