1
|
Vinogradov IM, Fox RJ, Fichtel C, Kappeler PM, Jennions MD. Paternity analysis reveals sexual selection on cognitive performance in mosquitofish. Nat Ecol Evol 2025:10.1038/s41559-025-02645-3. [PMID: 40000808 DOI: 10.1038/s41559-025-02645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
In many animal species, cognitive abilities are under strong natural selection because decisions about foraging, habitat choice and predator avoidance affect fecundity and survival. But how has sexual selection, which is usually stronger on males than females, shaped the evolution of cognitive abilities that influence success when competing for mates or fertilizations? We aimed to investigate potential links between individual differences in male cognitive performance to variation in paternity arising solely from sexual selection. We therefore ran four standard cognitive assays to quantify five measures of cognitive performance by male mosquitofish (Gambusia holbrooki). Males were then assigned to 11 outdoor ponds where they could compete for females. Females mate many times, which leads to intense sperm competition and broods with mixed paternity. We genotyped 2,430 offspring to identify their fathers. Males with greater inhibitory control and better spatial learning abilities sired significantly more offspring, while males with better initial impulse control sired significantly fewer offspring. Associative and reversal learning did not predict a male's share of paternity. In sum, there was sexual selection on several, but not all, aspects of male cognitive performance.
Collapse
Affiliation(s)
- Ivan M Vinogradov
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Rebecca J Fox
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Speechley EM, Ashton BJ, Thornton A, Simmons LW, Ridley AR. Heritability of cognitive performance in wild Western Australian magpies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231399. [PMID: 38481983 PMCID: PMC10933533 DOI: 10.1098/rsos.231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 04/26/2024]
Abstract
Individual differences in cognitive performance can have genetic, social and environmental components. Most research on the heritability of cognitive traits comes from humans or captive non-human animals, while less attention has been given to wild populations. Western Australian magpies (Gymnorhina tibicen dorsalis, hereafter magpies) show phenotypic variation in cognitive performance, which affects reproductive success. Despite high levels of individual repeatability, we do not know whether cognitive performance is heritable in this species. Here, we quantify the broad-sense heritability of associative learning ability in a wild population of Western Australian magpies. Specifically, we explore whether offspring associative learning performance is predicted by maternal associative learning performance or by the social environment (group size) when tested at three time points during the first year of life. We found little evidence that offspring associative learning performance is heritable, with an estimated broad-sense heritability of just -0.046 ± 0.084 (confidence interval: -0.234/0.140). However, complementing previous findings, we find that at 300 days post-fledging, individuals raised in larger groups passed the test in fewer trials compared with individuals from small groups. Our results highlight the pivotal influence of the social environment on cognitive development.
Collapse
Affiliation(s)
- Elizabeth M. Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
3
|
Cummings ME, Marsh-Rollo SE, Alonzo SH. Cognitive-Behavioral Divergence Is Greater Across Alternative Male Reproductive Phenotypes Than Between the Sexes in a Wild Wrasse. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.929595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual selection is a powerful diversifier of phenotype, behavior and cognition. Here we compare cognitive-behavioral traits across four reproductive phenotypes (females and three alternative males) of wild-caught ocellated wrasse (Symphodus ocellatus). Both sex and alternative male phenotypes are environmentally determined with sex determination occuring within the first year, and males transition between alternative phenotypes across 2 years (sneaker to satellite or satellite to nesting). We captured 151 ocellated wrasse and tested them on different behavior and cognition assays (scototaxis, shoaling, and two detour-reaching tasks). We found greater divergence across alternative male reproductive phenotypes than differences between the sexes in behavior, problem-solving, and relationships between these traits. Nesting males were significantly less bold than others, while sneaker males were faster problem-solvers and the only phenotype to display a cognitive-behavioral syndrome (significant correlation between boldness and problem-solving speed). Combining these results with prior measurements of sex steroid and stress hormone across males, suggests that nesting and sneaker males represent different coping styles. Our data suggests that transitioning between alternative male phenotypes requires more than changes in physiology (size and ornamentation) and mating tactic (sneaking vs. cooperation), but also involves significant shifts in cognitive-behavioral and coping style plasticity.
Collapse
|
4
|
Barou‐Dagues M, Dubois F. Exploring the interplay between natural and intersexual selection on the evolution of a cognitive trait. Ecol Evol 2022; 12:e9066. [PMID: 35813909 PMCID: PMC9251863 DOI: 10.1002/ece3.9066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
There has been an increased focus on the role of natural and sexual selection in shaping cognitive abilities, but the importance of the interaction between both forces remains largely unknown. Intersexual selection through female mate choice might be an important driver of the evolution of cognitive traits, especially in monogamous species, where females may obtain direct fitness benefits by choosing mates with better cognitive abilities. However, the importance given by female to male cognitive traits might vary among species and/or populations according to their life-history traits and ecology. To disentangle the effects of natural and sexual selection, here we use an agent-based simulation model and compare the model's predictions when females mate with the first randomly encountered male (i.e., under natural selection) versus when they choose among males based on their cognitive trait values (i.e., under natural and intersexual selection). Males and females are characterized, respectively, by their problem-solving ability and assessment strategy. At each generation, agents go through (1) a choosing phase during which females assess the cognitive abilities of potential mates until eventually finding an acceptable one and (2) a reproductive phase during which all males compete for limited resources that are exploited at a rate, which depends on their cognitive abilities. Because males provide paternal care, the foraging success of mated males determines the breeding success of the pair through its effect on nestling provisioning efficiency. The model predicts that intersexual selection plays a major role in most ecological conditions, by either reinforcing or acting against the effect of natural selection. The latter case occurs under harsh environmental conditions, where intersexual selection contributes to maintaining cognitive diversity. Our findings thus demonstrate the importance of considering the interaction between both selective forces and highlight the need to build a conceptual framework to target relevant cognitive traits.
Collapse
Affiliation(s)
| | - Frédérique Dubois
- Département des Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| |
Collapse
|
5
|
Zimmermann H, Blažek R, Polačik M, Reichard M. Individual experience as a key to success for the cuckoo catfish brood parasitism. Nat Commun 2022; 13:1723. [PMID: 35361775 PMCID: PMC8971504 DOI: 10.1038/s41467-022-29417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Brood parasites are involved in coevolutionary arms races with their hosts, whereby adaptations of one partner elicit the rapid evolution of counter-adaptations in the other partner. Hosts can also mitigate fitness costs of brood parasitism by learning from individual or social experience. In brood parasites, however, the role of learning can be obscured by their stealthy behaviour. Cuckoo catfish (Synodontis multipunctatus) parasitise clutches of mouthbrooding cichlids in Lake Tanganyika and are the only non-avian obligate brood parasites among vertebrates. We experimentally demonstrate that cuckoo catfish greatly enhance their efficiency in parasitising their hosts as they learn to overcome host defences. With increasing experience, cuckoo catfish increased their parasitism success by greater efficiency through improved timing and coordination of intrusions of host spawnings. Hence, within the coevolutionary arms races, brood parasites learn to overcome host defences during their lifetime. The importance of learning for brood parasites is explored using cuckoo catfish. The catfish increase their parasitism success as they gain experience, mainly by improving their social coordination and timing of intrusions to cichlid host spawnings.
Collapse
Affiliation(s)
- Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Kotlářská 2, Masaryk University, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, Czech Republic. .,Department of Botany and Zoology, Faculty of Science, Kotlářská 2, Masaryk University, Brno, Czech Republic. .,Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland.
| |
Collapse
|
6
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition in Vertebrates: Mate Choice Turns Cognition or Cognition Turns Mate Choice? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.
Collapse
|
7
|
Wallace KJ, Hofmann HA. Equal performance but distinct behaviors: sex differences in a novel object recognition task and spatial maze in a highly social cichlid fish. Anim Cogn 2021; 24:1057-1073. [PMID: 33718996 DOI: 10.1007/s10071-021-01498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Sex differences in behavior and cognition can be driven by differential selection pressures from the environment and in the underlying neuromolecular mechanisms of decision-making. The highly social cichlid fish Astatotilapia burtoni exhibits dynamic and complex social hierarchies, yet explicit cognitive testing (outside of social contexts) and investigations of sex differences in cognition have yet to be fully explored. Here we assessed male and female A. burtoni in two cognitive tasks: a novel object recognition task and a spatial task. We hypothesized that males outperform females in a spatial learning task and exhibit more neophilic/exploratory behavior across both tasks. In the present study we find that both sexes prefer the familiar object in a novel object recognition task, but the time at which they exhibit this preference differs between the sexes. Females more frequently learned the spatial task, exhibiting longer decision latencies and quicker error correction, suggesting a potential speed-accuracy tradeoff. Furthermore, the sexes differ in space use in both tasks and in a principal component analysis of the spatial task. A model selection analysis finds that preference, approach, and interaction duration in the novel object recognition task reach a threshold of importance averaged across all models. This work highlights the need to explicitly test for sex differences in cognition to better understand how individuals navigate dynamic social environments.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Hans A Hofmann
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Beardsworth CE, Whiteside MA, Capstick LA, Laker PR, Langley EJG, Nathan R, Orchan Y, Toledo S, van Horik JO, Madden JR. Spatial cognitive ability is associated with transitory movement speed but not straightness during the early stages of exploration. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201758. [PMID: 33959338 PMCID: PMC8074888 DOI: 10.1098/rsos.201758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Memories about the spatial environment, such as the locations of foraging patches, are expected to affect how individuals move around the landscape. However, individuals differ in the ability to remember spatial locations (spatial cognitive ability) and evidence is growing that these inter-individual differences influence a range of fitness proxies. Yet empirical evaluations directly linking inter-individual variation in spatial cognitive ability and the development and structure of movement paths are lacking. We assessed the performance of young pheasants (Phasianus colchicus) on a spatial cognition task before releasing them into a novel, rural landscape and tracking their movements. We quantified changes in the straightness and speed of their transitory paths over one month. Birds with better performances on the task initially made slower transitory paths than poor performers but by the end of the month, there was no difference in speed. In general, birds increased the straightness of their path over time, indicating improved efficiency independent of speed, but this was not related to performance on the cognitive task. We suggest that initial slow movements may facilitate more detailed information gathering by better performers and indicates a potential link between an individual's spatial cognitive ability and their movement behaviour.
Collapse
Affiliation(s)
| | - Mark A. Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lucy A. Capstick
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Philippa R. Laker
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J. G. Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ran Nathan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yotam Orchan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 67798, Israel
| | - Jayden O. van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Joah R. Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
9
|
Mohammadnejad A, Soerensen M, Baumbach J, Mengel‐From J, Li W, Lund J, Li S, Christiansen L, Christensen K, Hjelmborg JVB, Tan Q. Novel DNA methylation marker discovery by assumption-free genome-wide association analysis of cognitive function in twins. Aging Cell 2021; 20:e13293. [PMID: 33528912 PMCID: PMC7884045 DOI: 10.1111/acel.13293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023] Open
Abstract
Privileged by rapid increase in available epigenomic data, epigenome-wide association studies (EWAS) are to make a profound contribution to understand the molecular mechanism of DNA methylation in cognitive aging. Current statistical methods used in EWAS are dominated by models based on multiple assumptions, for example, linear relationship between molecular profiles and phenotype, normal distribution for the methylation data and phenotype. In this study, we applied an assumption-free method, the generalized correlation coefficient (GCC), and compare it to linear models, namely the linear mixed model and kinship model. We use DNA methylation associated with a cognitive score in 400 and 206 twins as discovery and replication samples respectively. DNA methylation associated with cognitive function using GCC, linear mixed model, and kinship model, identified 65 CpGs (p < 1e-04) from discovery sample displaying both nonlinear and linear correlations. Replication analysis successfully replicated 9 of these top CpGs. When combining results of GCC and linear models to cover diverse patterns of relationships, we identified genes like KLHDC4, PAPSS2, and MRPS18B as well as pathways including focal adhesion, axon guidance, and some neurological signaling. Genomic region-based analysis found 15 methylated regions harboring 11 genes, with three verified in gene expression analysis, also the 11 genes were related to top functional clusters including neurohypophyseal hormone and maternal aggressive behaviors. The GCC approach detects valuable methylation sites missed by traditional linear models. A combination of methylation markers from GCC and linear models enriched biological pathways sensible in neurological function that could implicate cognitive performance and cognitive aging.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Mette Soerensen
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human GeneticsDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Jan Baumbach
- Computational BiomedicineDepartment of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
- Chair of Experimental BioinformaticsTUM School of Life SciencesTechnical University of MunichMunichGermany
| | - Jonas Mengel‐From
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human GeneticsDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Weilong Li
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Population Research UnitFaculty of Social SciencesUniversity of HelsinkiHelsinkiFinland
| | - Jesper Lund
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Digital Health & Machine Learning Research GroupHasso Plattner Institute for Digital EngineeringPotsdamGermany
| | - Shuxia Li
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Lene Christiansen
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical ImmunologyCopenhagen University HospitalRigshospitaletCopenhagen ØDenmark
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human GeneticsDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Jacob V. B. Hjelmborg
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Qihua Tan
- Unit of Epidemiology, Biostatistics and BiodemographyDepartment of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human GeneticsDepartment of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
10
|
Rochais C, Pillay N, Schradin C. Do alternative reproductive tactics predict problem-solving performance in African striped mice? Anim Cogn 2021; 24:703-716. [PMID: 33420858 DOI: 10.1007/s10071-020-01459-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022]
Abstract
In changing environments, animals face unexpected problems to solve. Not all individuals in a population are equally able to solve new problems. It still remains unclear what factors (e.g. age and body condition) influence the propensity of problem solving. We investigated variation in problem-solving performance among males following alternative reproductive tactics (ARTs). We studied a free-ranging population of the African striped mouse (Rhabdomys pumilio). Adult male striped mice can employ 3 ARTs: (1) dominant group-living breeders, (2) philopatric living in their natal group, and (3) solitary-living roamers. ARTs in male striped mice reflect differences in competitiveness, sociality and physiology which could influence their problem-solving performance. We tested a total of 48 males in 2 years with two tasks: a string-pulling task to reach food and a door-opening task to reach the nest. Since male striped mice differ in personality traits independent of ARTs, we also measured activity, boldness and exploration. In addition, we assessed the association of body condition and age with problem solving. Problem solving was related the interaction of age and ARTs. The younger philopatrics had better performance in a food-extraction task whereas the older breeders were faster at solving the door-opening task. Individual differences in traits related to personality were significant correlates of problem-solving performance: pro-active mice (i.e. more active and explorative and bolder) performed better in both tasks. Finally, problem-solving performance was not consistent between the two tasks. Our study provides evidence of correlates of ARTs, age and personality on problem-solving abilities.
Collapse
Affiliation(s)
- Celine Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,IPHC, UNISTRA, CNRS, 23 Rue du Loess, 67200, Strasbourg, France
| |
Collapse
|
11
|
Morinay J, Cauchard L, Bize P, Doligez B. The Role of Cognition in Social Information Use for Breeding Site Selection: Experimental Evidence in a Wild Passerine Population. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.559690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In spatio-temporally variable environments, individuals are known to use information for making optimal decisions regarding where and when to breed. Optimal decision making can be complex when relying on multiple information sources with varying levels of reliability and accessibility. To deal with such complexity, different cognitive abilities such as learning and memory might enable individuals to optimally process and use these information sources. Yet, the link between information use and cognitive ability remains unexplored in natural populations. We investigated whether learning performance on a problem-solving task was related to the use of an experimentally manipulated source of social information for nest site selection in wild collared flycatchers (Ficedula albicollis). Collared flycatchers are known to use heterospecific information from their main competitors, the great tits (Parus major). Here, we created a local apparent preference by tits for an artificial nest site feature (a geometric symbol attached to nest boxes occupied by tits) and recorded whether flycatcher pairs chose to settle in nest boxes displaying the same feature as tits (i.e., copied tit apparent preference). Using a problem-solving task requiring opening a door temporarily blocking the nest box entrance, we then measured flycatchers' learning performance during nestling rearing as the number of entrances required to solve the task and enter the nest box twice in a row below a given efficiency threshold. We found that the probability to copy tit preference decreased with decreasing learning performance in females, particularly yearling ones: fast learning females copied tit preference, while slow learning ones rejected it. Male learning performance did not affect copying behavior. Our results showed that learning performance might play an important role in the ability to optimally use information for nest site selection in females: both fast and slow learning females could process this heterospecific information source but used it differently. This could partly explain the link between cognitive abilities and reproductive success reported in previous studies. Whether cognitive abilities may modulate condition-dependent costs of using different information remains to be explored.
Collapse
|
12
|
Rouse J, McDowall L, Mitchell Z, Duncan EJ, Bretman A. Social competition stimulates cognitive performance in a sex-specific manner. Proc Biol Sci 2020; 287:20201424. [PMID: 32933446 DOI: 10.1098/rspb.2020.1424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Social interactions are thought to be a critical driver in the evolution of cognitive ability. Cooperative interactions, such as pair bonding, rather than competitive interactions have been largely implicated in the evolution of increased cognition. This is despite competition traditionally being a very strong driver of trait evolution. Males of many species track changes in their social environment and alter their reproductive strategies in response to anticipated levels of competition. We predict this to be cognitively challenging. Using a Drosophila melanogaster model, we are able to distinguish between the effects of a competitive environment versus generic social contact by exposing flies to same-sex same-species competition versus different species partners, shown to present non-competitive contacts. Males increase olfactory learning/memory and visual memory after exposure to conspecific males only, a pattern echoed by increased expression of synaptic genes and an increased need for sleep. For females, largely not affected by mating competition, the opposite pattern was seen. The results indicate that specific social contacts dependent on sex, not simply generic social stimulation, may be an important evolutionary driver for cognitive ability in fruit flies.
Collapse
Affiliation(s)
- James Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laurin McDowall
- Centre for Gene Regulation and Expression School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | - Zak Mitchell
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Langley EJG, Horik JO, Whiteside MA, Beardsworth CE, Weiss MN, Madden JR. Early‐life learning ability predicts adult social structure, with potential implications for fitness outcomes in the wild. J Anim Ecol 2020; 89:1340-1349. [DOI: 10.1111/1365-2656.13194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Ellis J. G. Langley
- Centre for Research in Animal Behaviour, Psychology University of Exeter Exeter UK
| | - Jayden O. Horik
- Centre for Research in Animal Behaviour, Psychology University of Exeter Exeter UK
| | - Mark A. Whiteside
- Centre for Research in Animal Behaviour, Psychology University of Exeter Exeter UK
| | | | - Michael N. Weiss
- Centre for Research in Animal Behaviour, Psychology University of Exeter Exeter UK
| | - Joah R. Madden
- Centre for Research in Animal Behaviour, Psychology University of Exeter Exeter UK
| |
Collapse
|
14
|
Wallace KJ, Rausch RT, Ramsey ME, Cummings ME. Sex differences in cognitive performance and style across domains in mosquitofish (Gambusia affinis). Anim Cogn 2020; 23:655-669. [PMID: 32166514 DOI: 10.1007/s10071-020-01367-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022]
Abstract
Given that the sexes often differ in their ecological and sexual selection pressures, sex differences in cognitive properties are likely. While research on sexually dimorphic cognition often focuses on performance, it commonly overlooks how sexes diverge across cognitive domains and in behaviors exhibited during a cognitive task (cognitive style). We tested male and female western mosquitofish (Gambusia affinis) in three cognitive tasks: associative learning (numerical discrimination), cognitive flexibility (detour task), and spatio-temporal learning (shuttlebox). We characterized statistical relationships between cognitive performances and cognitive style during the associative learning task with measures of anxiety, boldness, exploration, reaction time, and activity. We found sex differences in performance, cognitive style, and the relationships between cognitive domains. Females outperformed males in the spatio-temporal learning task, while the sexes performed equally in associate learning and cognitive flexibility assays. Females (but not males) exhibited a 'fast-exploratory' cognitive style during associative learning trials. Meanwhile, only males showed a significant positive relationship between domains (associative learning and cognitive flexibility). We propose that these sexually dimorphic cognitive traits result from strong sexual conflict in this taxon; and emphasize the need to explore suites of sex-specific cognitive traits and broader comparative work examining sexual selection and cognition.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Richie T Rausch
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Spatial learning in captive and wild-born lizards: heritability and environmental effects. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2805-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Corral-López A, Romensky M, Kotrschal A, Buechel SD, Kolm N. Brain size affects responsiveness in mating behaviour to variation in predation pressure and sex ratio. J Evol Biol 2019; 33:165-177. [PMID: 31610058 DOI: 10.1111/jeb.13556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022]
Abstract
Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness-associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large-brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small-brained individuals courted more intensively and displayed more aggressive behaviours than large-brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision-making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Division of Biosciences, Genetics, Evolution & Environment, University College of London, London, UK
| | - Maksym Romensky
- Department of Mathematics, Uppsala University, Uppsala, Sweden.,Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Behavioural Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Huebner F, Fichtel C, Kappeler PM. Linking cognition with fitness in a wild primate: fitness correlates of problem-solving performance and spatial learning ability. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0295. [PMID: 30104438 DOI: 10.1098/rstb.2017.0295] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2018] [Indexed: 01/26/2023] Open
Abstract
Linking the cognitive performance of wild animals with fitness consequences is crucial for understanding evolutionary processes that shape individual variation in cognition. However, the few studies that have examined these links revealed differing relationships between various cognitive performance measures and fitness proxies. To contribute additional comparative data to this body of research, we linked individual performance during repeated problem-solving and spatial learning ability in a maze with body condition and survival in wild grey mouse lemurs (Microcebus murinus). All four variables exhibited substantial inter-individual variation. Solving efficiency in the problem-solving task, but not spatial learning performance, predicted the magnitude of change in body condition after the harsh dry season, indicating that the ability to quickly apply a newly discovered motor technique might also facilitate exploitation of new, natural food resources. Survival was not linked with performance in both tasks, however, suggesting that mouse lemurs' survival might not depend on the cognitive performances addressed here. Our study is the first linking cognition with fitness proxies in a wild primate species, and our discussion highlights the importance and challenges of accounting for a species' life history and ecology in choosing meaningful cognitive and fitness variables for a study in the wild.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Franziska Huebner
- Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany .,Department of Sociobiology/Anthropology, Johann Friedrich Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", Kellnerweg 4, 37077 Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,Department of Sociobiology/Anthropology, Johann Friedrich Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", Kellnerweg 4, 37077 Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,Department of Sociobiology/Anthropology, Johann Friedrich Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Madden JR, Langley EJG, Whiteside MA, Beardsworth CE, van Horik JO. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0297. [PMID: 30104439 PMCID: PMC6107567 DOI: 10.1098/rstb.2017.0297] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant (Phasianus colchicus) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
19
|
Han CS, Jablonski PG. Alternative reproductive tactics shape within-species variation in behavioral syndromes. Behav Ecol 2019. [DOI: 10.1093/beheco/arz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractMultiple behaviors can correlate with each other at the individual level (behavioral syndrome), and behavioral syndromes can vary in their direction between populations within a species. Within-species variation in behavioral syndromes is predicted to be associated with alternative reproductive tactics (ARTs), which evolve under different selection regimes. Here, we tested this using a water strider species, Gerris gracilicornis, in which males employ 2 ARTs that are fixed for life: signaling males (producing courtship ripples) versus nonsignaling males (producing no courtship ripples). We measured multiple behaviors in males with both of these ARTs and compared behavioral syndromes between them. Our results showed that signaling males were more active and attempted to mate more frequently than nonsignaling males. This shaped an overall behavioral syndrome between activities in mating and nonmating contexts when we pooled both ARTs. In addition, the behavioral syndromes between cautiousness and mating activity differed significantly between ARTs. In signaling males, the syndrome was significantly negative: signaling males more eager to mate tended to leave their refuges more rapidly. However, mating activity and cautiousness were not correlated in nonsignaling males. This might be because active males, in the context of predation risk and mating, were favored during the evolution and maintenance of the unique intimidating courtship tactic of G. gracilicornis males. Thus, our findings suggest that ARTs facilitate behavioral divergence and also contribute to the evolution of tactic-specific behavioral syndromes. We also show that research on ARTs and behavioral syndromes can be harmonized to study behavioral variation.
Collapse
Affiliation(s)
- Chang S Han
- Department of Biology, Kyung Hee University, Dongdaemun-Gu, Seoul, Korea
| | - Piotr G Jablonski
- Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza, Warsaw, Poland
| |
Collapse
|
20
|
Louison MJ, Hage VM, Stein JA, Suski CD. Quick learning, quick capture: largemouth bass that rapidly learn an association task are more likely to be captured by recreational anglers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics. Anim Cogn 2017; 20:1003-1018. [PMID: 28993917 DOI: 10.1007/s10071-017-1135-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022]
Abstract
For the past two decades, behavioural ecologists have documented consistent individual differences in behavioural traits within species and found evidence for animal "personality". It is only relatively recently, however, that increasing numbers of researchers have begun to investigate individual differences in cognitive ability within species. It has been suggested that cognitive test batteries may provide an ideal tool for this growing research endeavour. In fact, cognitive test batteries have now been used to examine the causes, consequences and underlying structure of cognitive performance within and between many species. In this review, we document the existing attempts to develop cognitive test batteries for non-human animals and review the claims that these studies have made in terms of the structure and evolution of cognition. We argue that our current test battery methods could be improved on multiple fronts, from the design of tasks, to the domains targeted and the species tested. Refining and optimising test battery design will provide many benefits. In future, we envisage that well-designed cognitive test batteries may provide answers to a range of exciting questions, including giving us greater insight into the evolution and structure of cognition.
Collapse
|
22
|
Bannier F, Tebbich S, Taborsky B. Early experience affects learning performance and neophobia in a cooperatively breeding cichlid. Ethology 2017. [DOI: 10.1111/eth.12646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francis Bannier
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| | - Sabine Tebbich
- Department for Behavioural Biology; University of Vienna; Vienna Austria
| | - Barbara Taborsky
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
23
|
Lucon-Xiccato T, Dadda M. Personality and Cognition: Sociability Negatively Predicts Shoal Size Discrimination Performance in Guppies. Front Psychol 2017; 8:1118. [PMID: 28713317 PMCID: PMC5491838 DOI: 10.3389/fpsyg.2017.01118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Evidence from a growing number of organisms suggests that individuals show consistent performance differences in cognitive tasks. According to empirical and theoretical studies, these cognitive differences might be at least partially related to personality. We tested this hypothesis in the guppy, Poecilia reticulata, by comparing individuals with different degree of sociability in the discrimination of shoals formed by a different number of conspecifics. We found that individual guppies show repeatability of sociability as expected for personality traits. Furthermore, individuals with higher sociability showed poorer shoal size discrimination performance and were less efficient in choosing the larger shoal compared to individuals with low sociability. As choosing the larger shoal is an important strategy of defense against predators for guppies, we discuss this relationship between personality and cognition in the light of its fitness consequences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
| | - Marco Dadda
- Dipartimento di Psicologia Generale, Università degli Studi di PadovaPadova, Italy
| |
Collapse
|
24
|
Phillips A, Reichard M, Smith C. Sex differences in the responses to oviposition site cues by a fish revealed by tests with an artificial host. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Lucon-Xiccato T, Bisazza A. Individual differences in cognition among teleost fishes. Behav Processes 2017; 141:184-195. [PMID: 28126389 DOI: 10.1016/j.beproc.2017.01.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Individual differences in cognitive abilities have been thoroughly investigated in humans and to a lesser extent in other mammals. Despite the growing interest in studying cognition in other taxonomic groups, data on individual differences are scarce for non-mammalian species. Here, we review the literature on individual differences in cognitive abilities in teleost fishes. Relatively few studies have directly addressed this topic and have provided evidence of consistent and heritable individual variation in cognitive abilities in fish. We found much more evidence of individual cognitive differences in other research areas, namely sex differences, personality differences, cerebral lateralisation and comparison between populations. Altogether, these studies suggest that individual differences in cognition are as common in fish as in warm-blooded vertebrates. Based on the example of research on mammals, we suggest directions for future investigation in fish.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
26
|
|
27
|
Řežucha R, Reichard M. The Association Between Personality Traits, Morphological Traits and Alternative Mating Behaviour in Male Endler's Guppies,Poecilia wingei. Ethology 2016. [DOI: 10.1111/eth.12491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Radomil Řežucha
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
28
|
Pritchard DJ, Hurly TA, Tello-Ramos MC, Healy SD. Why study cognition in the wild (and how to test it)? J Exp Anal Behav 2016; 105:41-55. [DOI: 10.1002/jeab.195] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 02/03/2023]
|