2
|
Tang Q, Burri R, Liu Y, Suh A, Sundev G, Heckel G, Schweizer M. Seasonal migration patterns and the maintenance of evolutionary diversity in a cryptic bird radiation. Mol Ecol 2021; 31:632-645. [PMID: 34674334 PMCID: PMC9298432 DOI: 10.1111/mec.16241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023]
Abstract
Morphological differentiation associated with evolutionary diversification is often explained with adaptive benefits but the processes and mechanisms maintaining cryptic diversity are still poorly understood. Using genome‐wide data, we show here that the pale sand martin Riparia diluta in Central and East Asia consists of three genetically deeply differentiated lineages which vary only gradually in morphology but broadly reflect traditional taxonomy. We detected no signs of gene flow along the eastern edge of the Qinghai‐Tibetan plateau between lowland south‐eastern Chinese R. d. fohkienensis and high‐altitude R. d. tibetana. Largely different breeding and migration timing between these low and high altitude populations as indicated by phenology data suggests that allochrony might act as prezygotic isolation mechanism in the area where their ranges abut. Mongolian populations of R. d. tibetana, however, displayed signs of limited mixed ancestries with Central Asian R. d. diluta. Their ranges meet in the area of a well‐known avian migratory divide, where western lineages take a western migration route around the Qinghai‐Tibetan plateau to winter quarters in South Asia, and eastern lineages take an eastern route to Southeast Asia. This might also be the case between western R. d. diluta and eastern R. d. tibetana as indicated by differing wintering grounds. We hypothesize that hybrids might have nonoptimal intermediate migration routes and selection against them might restrict gene flow. Although further potential isolation mechanisms might exist in the pale sand martin, our study points towards contrasting migration behaviour as an important factor in maintaining evolutionary diversity under morphological stasis.
Collapse
Affiliation(s)
- Qindong Tang
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Natural History Museum, Bern, Switzerland
| | - Reto Burri
- Schweizerische Vogelwarte, Sempach, Switzerland
| | - Yang Liu
- State Key Laboratory of Biocontrol, College of Ecology School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Alexander Suh
- School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| | - Gombobaatar Sundev
- National University of Mongolia and Mongolian Ornithological Society, Ulaanbaatar, Mongolia
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Manuel Schweizer
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Natural History Museum, Bern, Switzerland
| |
Collapse
|
3
|
Odom KJ, Araya-Salas M, Morano JL, Ligon RA, Leighton GM, Taff CC, Dalziell AH, Billings AC, Germain RR, Pardo M, de Andrade LG, Hedwig D, Keen SC, Shiu Y, Charif RA, Webster MS, Rice AN. Comparative bioacoustics: a roadmap for quantifying and comparing animal sounds across diverse taxa. Biol Rev Camb Philos Soc 2021; 96:1135-1159. [PMID: 33652499 DOI: 10.1111/brv.12695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.
Collapse
Affiliation(s)
- Karan J Odom
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Marcelo Araya-Salas
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Sede del Sur, Universidad de Costa Rica, Golfito, 60701, Costa Rica
| | - Janelle L Morano
- Macaulay Library, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Russell A Ligon
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Gavin M Leighton
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Department of Biology, SUNY Buffalo State, Buffalo, NY, 14222, U.S.A
| | - Conor C Taff
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Anastasia H Dalziell
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Centre for Sustainable Ecosystem Solutions, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Alexis C Billings
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, U.S.A.,Department of Environmental, Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94709, U.S.A
| | - Ryan R Germain
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Michael Pardo
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, U.S.A
| | - Luciana Guimarães de Andrade
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, U.S.A.,Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | - Daniela Hedwig
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | - Sara C Keen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A.,Department of Geological Sciences, Stanford University, Stanford, CA, 94305, U.S.A
| | - Yu Shiu
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | - Russell A Charif
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | - Michael S Webster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, U.S.A.,Macaulay Library, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| | - Aaron N Rice
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, U.S.A
| |
Collapse
|
6
|
Uy JAC, Irwin DE, Webster MS. Behavioral Isolation and Incipient Speciation in Birds. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavioral changes, such as those involved in mating, foraging, and migration, can generate reproductive barriers between populations. Birds, in particular, are known for their great diversity in these behaviors, and so behavioral isolation is often proposed to be the major driver of speciation. Here, we review empirical evidence to evaluate the importance of behavioral isolation in the early stages of avian speciation. Experimentally measured mating preferences indicate that changes in mating behavior can result in premating barriers, with their strength depending on the extent of divergence in mating signals. Differences in migratory and foraging behavior also can play important roles in generating reproductive barriers in the early stages of speciation. However, because premating behavioral isolation is imperfect, extrinsic postzygotic barriers, in the form of selection against hybrids having intermediate phenotypes, also play an important role in avian diversification, especially in completing the speciation process.
Collapse
Affiliation(s)
- J. Albert C. Uy
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA
| | - Darren E. Irwin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael S. Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|