1
|
Recart W, Bernhard R, Ng I, Garcia K, Fleming-Davies AE. Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens 2023; 12:pathogens12020347. [PMID: 36839619 PMCID: PMC9958737 DOI: 10.3390/pathogens12020347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host-pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.
Collapse
Affiliation(s)
- Wilnelia Recart
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Correspondence:
| | - Rover Bernhard
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Biology Department, Lewis and Clark College, 615 S. Palatine Hill Road, Portland, OR 97219, USA
| | - Isabella Ng
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | - Katherine Garcia
- Biology Department, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
- Environmental Sciences Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0021, USA
| | | |
Collapse
|
2
|
Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, Krajinski F, Martínez-Medina A. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. PLANT, CELL & ENVIRONMENT 2022; 45:3412-3428. [PMID: 35982608 DOI: 10.1111/pce.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.
Collapse
Affiliation(s)
- Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Petra Hoffmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franziska Krajinski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Ainhoa Martínez-Medina
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
- Plant-Microorganism Interactions Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
3
|
Samaddar S, Karp DS, Schmidt R, Devarajan N, McGarvey JA, Pires AFA, Scow K. Role of soil in the regulation of human and plant pathogens: soils' contributions to people. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200179. [PMID: 34365819 DOI: 10.1098/rstb.2020.0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Soil and soil biodiversity play critical roles in Nature's Contributions to People (NCP) # 10, defined as Nature's ability to regulate direct detrimental effects on humans, and on human-important plants and animals, through the control or regulation of particular organisms considered to be harmful. We provide an overview of pathogens in soil, focusing on human and crop pathogens, and discuss general strategies, and examples, of how soils' extraordinarily diverse microbial communities regulate soil-borne pathogens. We review the ecological principles underpinning the regulation of soil pathogens, as well as relationships between pathogen suppression and soil health. Mechanisms and specific examples are presented of how soil and soil biota are involved in regulating pathogens of humans and plants. We evaluate how specific agricultural management practices can either promote or interfere with soil's ability to regulate pathogens. Finally, we conclude with how integrating soil, plant, animal and human health through a 'One Health' framework could lead to more integrated, efficient and multifunctional strategies for regulating detrimental organisms and processes. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Sandipan Samaddar
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - Naresh Devarajan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Jeffery A McGarvey
- Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Alda F A Pires
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Tan W, Acevedo T, Harris EV, Alcaide TY, Walters JR, Hunter MD, Gerardo NM, Roode JC. Transcriptomics of monarch butterflies (
Danaus plexippus
) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes. Mol Ecol 2019; 28:4845-4863. [DOI: 10.1111/mec.15219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wen‐Hao Tan
- Department of Biology Emory University Atlanta GA USA
| | - Tarik Acevedo
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | | | - Tiffanie Y. Alcaide
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | - James R. Walters
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary Biology University of Michigan Ann Arbor MI USA
| | | | | |
Collapse
|
5
|
Elderd BD. Bottom-up trait-mediated indirect effects decrease pathogen transmission in a tritrophic system. Ecology 2018; 100:e02551. [PMID: 30536658 DOI: 10.1002/ecy.2551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/21/2018] [Accepted: 10/02/2018] [Indexed: 01/18/2023]
Abstract
A plant's induction of secondary defenses helps to decrease herbivore damage by changing resource quality. While these chemical or physical defenses may directly decrease herbivory, they can also have indirect consequences. In a tritrophic system consisting of a plant, an insect herbivore, and an insect pathogen, plant based trait-mediated indirect effects (TMIEs) can alter host-pathogen interactions and, thereby, indirectly affect disease transmission. In a series of field experiments, individual soybean plants (Glycine max) were sprayed with either a jasmonic acid (JA) solution to trigger induction of plant defenses or a similar control compound. Fall armyworm (Spodoptera frugiperda) larvae along with varying amounts of a lethal baculovirus were placed on the plants to measure transmission. Induction of plant defenses decreased viral transmission due to increased population heterogeneity arising from changes in individual susceptibility. The change in susceptibility via TMIEs was driven by a decrease in feeding rates and an increase viral dose needed to infect larvae. While the induction against herbivore attack may decrease herbivory, it can also decrease the efficacy of the herbivore's pathogen potentially to the plant's detriment. While TMIEs have been well-recognized for being driven by top-down forces, bottom-up interactions can dictate community dynamics and, here, epizootic severity.
Collapse
Affiliation(s)
- Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
6
|
Tan WH, Tao L, Hoang KM, Hunter MD, de Roode JC. The Effects of Milkweed Induced Defense on Parasite Resistance in Monarch Butterflies, Danaus plexippus. J Chem Ecol 2018; 44:1040-1044. [PMID: 30123937 DOI: 10.1007/s10886-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022]
Abstract
Many plants express induced defenses against herbivores through increasing the production of toxic secondary chemicals following damage. Phytochemical induction can directly or indirectly affect other organisms within the community. In tri-trophic systems, increased concentrations of plant toxins could be detrimental to plants if herbivores can sequester these toxins as protective chemicals for themselves. Thus, through trophic interactions, induction can lead to either positive or negative effects on plant fitness. We examined the effects of milkweed (Asclepias spp.) induced defenses on the resistance of monarch caterpillars (Danaus plexippus) to a protozoan parasite (Ophryocystis elektroscirrha). Milkweeds contain toxic secondary chemicals called cardenolides, higher concentrations of which are associated with reduced parasite growth. Previous work showed that declines in foliar cardenolides caused by aphid attack render monarch caterpillars more susceptible to infection. Here, we ask whether cardenolide induction by monarchs increases monarch resistance to disease. We subjected the high-cardenolide milkweed A. curassavica and the low-cardenolide A. syriaca to caterpillar grazing, and reared infected and uninfected caterpillars on these plants. As expected, monarchs suffered less parasite growth and disease when reared on A. curassavica than on A. syriaca. We also found that herbivory increased cardenolide concentrations in A. curassavica, but not A. syriaca. However, cardenolide induction in A. curassavica was insufficient to influence monarch resistance to the parasite. Our results suggest that interspecific variation in cardenolide concentration is a more important driver of parasite defense than plasticity via induced defenses in this tri-trophic system.
Collapse
Affiliation(s)
- Wen-Hao Tan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leiling Tao
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kevin M Hoang
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Meier AR, Hunter MD. Arbuscular mycorrhizal fungi mediate herbivore-induction of plant defenses differently above and belowground. OIKOS 2018. [DOI: 10.1111/oik.05402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Amanda R. Meier
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| | - Mark D. Hunter
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| |
Collapse
|
8
|
Decker LE, de Roode JC, Hunter MD. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol Lett 2018; 21:1353-1363. [PMID: 30134036 DOI: 10.1111/ele.13101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2 , and measured changes in resistance, tolerance, and virulence. The most high-cardenolide milkweed species lost its medicinal properties under elevated CO2 ; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jacobus C de Roode
- Biology Department, Rollins 1113 O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
9
|
Meier AR, Hunter MD. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Tao L, Hunter MD, de Roode JC. Microbial Root Mutualists Affect the Predators and Pathogens of Herbivores above Ground: Mechanisms, Magnitudes, and Missing Links. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Shikano I. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens. J Chem Ecol 2017; 43:586-598. [DOI: 10.1007/s10886-017-0850-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
12
|
Mursinoff S, Tack AJM. Spatial variation in soil biota mediates plant adaptation to a foliar pathogen. THE NEW PHYTOLOGIST 2017; 214:644-654. [PMID: 28042886 DOI: 10.1111/nph.14402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Theory suggests that below-ground spatial heterogeneity may mediate host-parasite evolutionary dynamics and patterns of local adaptation, but this has rarely been tested in natural systems. Here, we test experimentally for the impact of spatial variation in the abiotic and biotic soil environment on the evolutionary outcome of the interaction between the host plant Plantago lanceolata and its specialist foliar pathogen Podosphaera plantaginis. Plants showed no adaptation to the local soil environment in the absence of natural enemies. However, quantitative, but not qualitative, plant resistance against local pathogens was higher when plants were grown in their local field soil than when they were grown in nonlocal field soil. This pattern was robust when extending the spatial scale beyond a single region, but disappeared with soil sterilization, indicating that soil biota mediated plant adaptation. We conclude that below-ground biotic heterogeneity mediates above-ground patterns of plant adaptation, resulting in increased plant resistance when plants are grown in their local soil environment. From an applied perspective, our findings emphasize the importance of using locally selected seeds in restoration ecology and low-input agriculture.
Collapse
Affiliation(s)
- Sini Mursinoff
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
13
|
Hoang K, Tao L, Hunter MD, de Roode JC. Host Diet Affects the Morphology of Monarch Butterfly Parasites. J Parasitol 2017; 103:228-236. [PMID: 28323544 DOI: 10.1645/16-142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.
Collapse
Affiliation(s)
- Kevin Hoang
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322. Correspondence should be sent to Kevin Hoang at:
| | - Leiling Tao
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322. Correspondence should be sent to Kevin Hoang at:
| | - Mark D Hunter
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322. Correspondence should be sent to Kevin Hoang at:
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322. Correspondence should be sent to Kevin Hoang at:
| |
Collapse
|
14
|
Pierce AA, de Roode JC, Tao L. Comparative genetics of Na +/K +-ATPase in monarch butterfly populations with varying host plant toxicity. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amanda A. Pierce
- Department of Biology; Emory University; 1510 Clifton Road Atlanta GA 30322 USA
| | - Jacobus C. de Roode
- Department of Biology; Emory University; 1510 Clifton Road Atlanta GA 30322 USA
| | - Leiling Tao
- Department of Biology; Emory University; 1510 Clifton Road Atlanta GA 30322 USA
| |
Collapse
|