1
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
2
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
3
|
Dual Mating Strategies Observed in Male Clients of Female Sex Workers. HUMAN NATURE (HAWTHORNE, N.Y.) 2023; 34:46-63. [PMID: 36800116 PMCID: PMC10073045 DOI: 10.1007/s12110-023-09439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Humans have a complex and dynamic mating system, and there is evidence that our modern sexual preferences stem from evolutionary pressures. In the current paper we explore male use of a dual mating strategy: simultaneously pursuing both a long-term relationship (pair-bonding) as well as short-term, extra-pair copulations (variety-seeking). The primary constraint on such sexual pursuits is partner preferences, which can limit male behavior and hence cloud inferences about male preferences. The aim of this study was to investigate heterosexual male mating preferences when largely unconstrained by female partner preferences. In service of this goal, female full-service sex workers (N = 6) were surveyed on the traits and behaviors of their male clients (N = 516) and iterative cluster analysis was used to identify male mating typologies. Two clusters emerged: clients seeking a pair-bonding experience and clients seeking a variety experience. Results also suggested that romantically committed men were more likely to seek a variety experience than a relationship experience. We conclude that men desire both pair-bonding and sexual variety, and that their preference for one might be predicted by fulfilment of the other. These findings have implications for relationships, providing insight into motivations for male infidelity.
Collapse
|
4
|
Rice MA, Galindez SM, Garner JT, Ophir AG. Effects of social and environmental contexts on multi-male mating and mixed paternity in socially monogamous female prairie voles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220298. [PMID: 36249338 PMCID: PMC9532998 DOI: 10.1098/rsos.220298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
With whom and how often to mate are fundamental questions that impact individual reproductive success and the mating system. Relatively few studies have investigated female mating tactics compared with males. Here, we asked how differential access to mates influences the occurrence of mixed paternity and overall reproductive success in socially monogamous female prairie voles (Microtus ochrogaster). We created male- and female-biased sex ratios of prairie voles living in semi-natural outdoor enclosures. We ran paternity analyses to determine the identity and number of mating partners females had and the number of offspring produced. We found that 57.1% of females had litters fathered by two or more males when males outnumbered females, and 87.5% of females had litters with more than one father when females outnumbered males. However, the percentage of mixed paternity and the total number of embryos were not statistically different between social contexts. We determined that female fecundity (i.e. number of embryos) correlated with the number of male fathers in each litter across social contexts. Although our study did not support the hypothesis that social context directly influences female mating decisions, it did suggest that female multi-male mating might lead to increased fertilization success under semi-natural conditions.
Collapse
Affiliation(s)
- Marissa A. Rice
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | - Joshua T. Garner
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
5
|
Zweerus NL, van Wijk M, Smallegange IM, Groot AT. Mating status affects female choice when females are signalers. Ecol Evol 2022; 12:e8864. [PMID: 35462973 PMCID: PMC9019137 DOI: 10.1002/ece3.8864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Sexual selection in animals has been mostly studied in species in which males are signalers and females are choosers. However, in many species, females are (also) signalers. In species with non‐signaling females, virgin females are hypothesized to be less choosy than mated females, as virgins must mate to realize fitness and the number of available males is generally limited. Yet, when females signal to attract males, mate limitation can be overcome. We tested how virgin and mated females differ in their calling behavior, mating latency, and in mate choice, using the tobacco budworm Chloridea (Heliothis) virescens as an example for a species in which females are not only choosers but also signalers. We found that virgin females signaled longer than mated females, but virgin and mated signaling females were equally ready to mate, in contrast to non‐signaling females. However, we found that virgin signaling females showed weaker mate preference than mated females, which can be explained by the fact that females increase their fitness with multiple matings. Mated females may thus further increase their fitness by more stringent mate selection. We conclude that signaling is a crucial aspect to consider when studying female mate choice because signaling may affect the number of available mates to choose from.
Collapse
Affiliation(s)
- Naomi L. Zweerus
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam Netherlands
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam Netherlands
| | - Isabel M. Smallegange
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam Netherlands
- School of Natural & Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam Netherlands
| |
Collapse
|
6
|
Kobayashi H, Sato Y, Egas M. Males mate with females even after sperm depletion in the two-spotted spider mite. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:465-477. [PMID: 35451696 DOI: 10.1007/s10493-022-00706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Generally, males increase their reproductive success by mating with as many females as possible, whereas females increase their reproductive success by choosing males who provide more direct and indirect benefits. The difference in reproductive strategy between the sexes creates intense competition among males for access to females, therefore males spend much energy and time for competition with rival males for their reproduction. However, if they do not need to engage themselves into male competition and females are in no short supply, how many females can a male mate with and fertilize? We address this question in the two-spotted spider mite, Tetranychus urticae Koch. In this study, we investigated how many females a young, virgin male mated in 3 h, and checked whether the mated females were fertilized. We found that on average males mated with 12-13 females (range: 5-25). As latency to next mating did not change with the number of matings, the males are predicted to engage in even more matings if the mating trial were continued beyond 3 h. Copulation durations decreased with the number of matings and typically after 11 copulations with females any further copulations did not lead to fertilization, suggesting that males continued to mate with females even after sperm depletion. We discuss why spider mite males continue to display mating and copulation behaviour even after their sperm is depleted.
Collapse
Affiliation(s)
- Hisaho Kobayashi
- College of Biological Science, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yukie Sato
- Faculty of Life and Environmental Sciences/Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Pollo P, Nakagawa S, Kasumovic MM. The better, the choosier: A meta-analysis on interindividual variation of male mate choice. Ecol Lett 2022; 25:1305-1322. [PMID: 35259282 PMCID: PMC9543502 DOI: 10.1111/ele.13981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
Male mate choice occurs in several animal species, but we know little about the factors that influence the expression of this behaviour. Males vary in their capacity to acquire mates (i.e. male quality), which could be crucial to male mate choice expression but it is often overlooked. Using a meta‐analytical approach, we explore interindividual variation in the expression of male mate choice by comparing the mating investment of males of different qualities and phenotypes to high‐ and low‐quality females. We used two datasets that together contained information from 60 empirical studies, comprising 52 species. We found that males of all qualities and phenotypes prefer high‐quality females, but differ in the strength of such preference. High‐ and medium‐quality males are choosier than low‐quality males. Similarly, males that are larger or in greater body condition are choosier than their counterparts. In contrast, male body mass and age are not associated with changes in male mate choice. We also show that experimental design may influence our understanding of male mating investment patterns, which may limit the generalisation of our findings. Nonetheless, we argue that male quality may be an important feature in the expression of male mate choice.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Kensington, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Kensington, Sydney, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Kensington, Sydney, Australia
| |
Collapse
|
8
|
Effects of Delayed Mating on the Reproductive Performance of Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). INSECTS 2021; 12:insects12070629. [PMID: 34357289 PMCID: PMC8304363 DOI: 10.3390/insects12070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary In many Asian countries, Henosepilachna vigintioctopunctata (F.), is seriously harmful to Solanaceae vegetables. With the popularization of green agriculture and the improvement in people’s living standards, biological pest control may become the mainstream. The artificial release of sex pheromones and other methods to delay insect mating, thus affecting population abundance, is an important part of biological control. We took H. vigintioctopunctata collected from Jingzhou, Hubei Province, China, back to the laboratory to establish an experimental population to study the effect of delayed mating on its reproductive behavior. The negative effects on reproduction and changes in population life table parameters, such as net reproductive rate, intrinsic and finite rates of increase, doubling time, and mean generation time, could be estimated by the treatment of delayed mating of males and females, which could be useful for providing important information for pest control in the future. Abstract Henosepilachna vigintioctopunctata (F.) is a serious pest of numerous solanaceous crops in many Asian countries. The purpose of this study was to clarify the effects of delayed mating on mating success, fecundity, fertility, pre-oviposition period, oviposition period, adult longevity, and population life table parameters (including net reproductive rate, intrinsic and finite rates of increase, doubling time, and mean generation time) of H. vigintioctopunctata. Beginning three days after emergence for both sexes, mating was delayed an additional 0, 2, 4, 6, or 8 days. We compared the data when mating was delayed for males only with the data when mating was similarly delayed for females only. Reproductive and life table parameters were calculated from the two data sets and compared. The results showed that the preoviposition and oviposition period of adults was significantly reduced by delayed mating, while the preoviposition period was not significantly different in adults mated at older ages. The mating success rate, fecundity, and proportion of hatching eggs decreased with increasing mating age. Longevity was not affected by the age at mating. Mating delay also affected the life table parameters of H. vigintioctopunctata, with a similar trend observed in the net reproductive rate and intrinsic and finite rates of increase, all of which decreased gradually as the number of delay days increased. The population doubling time increased with increases in mating age. The results also showed that delayed mating was an effective measure to consider in controlling H. vigintioctopunctata. It is hoped that our data will provide a scientific basis and contribute technical guidance for forecasting and integrated management of this pest.
Collapse
|
9
|
Gao K, van Wijk M, Clement Z, Egas M, Groot AT. A life-history perspective on sexual selection in a polygamous species. BMC Evol Biol 2020; 20:53. [PMID: 32380947 PMCID: PMC7206733 DOI: 10.1186/s12862-020-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Zoe Clement
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands. .,Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
10
|
Zheng XL, Liu J, Lu W, He XZ, Wang Q. Mating Delay Reduces Reproductive Performance but not Longevity in a Monandrous Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5771297. [PMID: 32118258 PMCID: PMC7050306 DOI: 10.1093/jisesa/ieaa009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 05/03/2023]
Abstract
Age at mating is one of the most important factors that affect mating success and reproductive fitness in insects. The present study investigated how the age of the two sexes at mating determined mating success, reproductive fitness and longevity in Phauda flammans (Walker) (Lepidoptera: Phaudidae), a serious pest of Ficus spp. trees in South and Southeast Asia. The study may provide basic knowledge for the development of mating disruption programs using sex pheromones to control this pest. The species is monandrous and its adults live for only 4-5 d. We show that delayed mating significantly lowered mating success in both sexes, with males being more severely affected than females. Mating delay also reduced reproductive outputs of both sexes but females were more negatively affected than males. We did not find any effect of delayed mating on longevity of either sex. Our findings suggest that mating disruption with sex pheromones can be an effective method to delay mating in P. flammans, reducing reproductive success and thus limit population growth.
Collapse
Affiliation(s)
- Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Junyan Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
- Corresponding author, e-mail:
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Pollo P, Muniz DG, Santos ES. Be prudent if it fits you well: male mate choice depends on male size in a golden orb-weaver spider. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Henshaw JM, Fromhage L, Jones AG. Sex roles and the evolution of parental care specialization. Proc Biol Sci 2019; 286:20191312. [PMID: 31455191 DOI: 10.1098/rspb.2019.1312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Males and females are defined by the relative size of their gametes (anisogamy), but secondary sexual dimorphism in fertilization, parental investment and mating competition is widespread and often remarkably stable over evolutionary timescales. Recent theory has clarified the causal connections between anisogamy and the most prevalent differences between the sexes, but deviations from these patterns remain poorly understood. Here, we study how sex differences in parental investment and mating competition coevolve with parental care specialization. Parental investment often consists of two or more distinct activities (e.g. provisioning and defence) and parents may care more efficiently by specializing in a subset of these activities. Our model predicts that efficient care specialization broadens the conditions under which biparental investment can evolve in lineages that historically had uniparental care. Major transitions in sex roles (e.g. from female-biased care with strong male mating competition to male-biased care with strong female competition) can arise following ecologically induced changes in the costs or benefits of different care types, or in the sex ratio at maturation. Our model provides a clear evolutionary mechanism for sex-role transitions, but also predicts that such transitions should be rare. It consequently contributes towards explaining widespread phylogenetic inertia in parenting and mating systems.
Collapse
Affiliation(s)
- Jonathan M Henshaw
- Department of Biological Sciences, University of Idaho, 875 Perimeter MS 3051, Moscow, ID, USA.,Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Finland
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Finland
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, 875 Perimeter MS 3051, Moscow, ID, USA
| |
Collapse
|
13
|
Jennions MD, Fromhage L. Not all sex ratios are equal: the Fisher condition, parental care and sexual selection. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0312. [PMID: 28760755 DOI: 10.1098/rstb.2016.0312] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 11/12/2022] Open
Abstract
The term 'sex roles' encapsulates male-female differences in mate searching, competitive traits that increase mating/fertilization opportunities, choosiness about mates and parental care. Theoretical models suggest that biased sex ratios drive the evolution of sex roles. To model sex role evolution, it is essential to note that in most sexually reproducing species (haplodiploid insects are an exception), each offspring has one father and one mother. Consequently, the total number of offspring produced by each sex is identical, so the mean number of offspring produced by individuals of each sex depends on the sex ratio (Fisher condition). Similarly, the total number of heterosexual matings is identical for each sex. On average, neither sex can mate nor breed more often when the sex ratio is even. But equally common in which sex ratio? The Fisher condition only applies to some reproductive measures (e.g. lifetime offspring production or matings) for certain sex ratios (e.g. operational or adult sex ratio; OSR, ASR). Here, we review recent models that clarify whether a biased OSR, ASR or sex ratio at maturation (MSR) have a causal or correlational relationship with the evolution of sex differences in parental care and competitive traits-two key components of sex roles. We suggest that it is more fruitful to understand the combined effect of the MSR and mortality rates while caring and competing than that of the ASR itself. In short, we argue that the ASR does not have a causal role in the evolution of parental care. We point out, however, that the ASR can be a cue for adaptive phenotypic plasticity in how each sex invests in parental care.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Michael D Jennions
- Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2600, Australia .,Wissenschaftkolleg zu Berlin, Wallotstraße 19, 14193 Berlin, Germany
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014, Finland
| |
Collapse
|
14
|
Puurtinen M, Fromhage L. Evolution of male and female choice in polyandrous systems. Proc Biol Sci 2018; 284:rspb.2016.2174. [PMID: 28330914 DOI: 10.1098/rspb.2016.2174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
We study the evolution of male and female mating strategies and mate choice for female fecundity and male fertilization ability in a system where both sexes can mate with multiple partners, and where there is variation in individual quality (i.e. in the availability of resources individuals can allocate to matings, mate choice and production of gametes). We find that when the cost of mating differs between sexes, the sex with higher cost of mating is reluctant to accept matings and is often also choosy, while the other sex accepts all matings. With equal mating costs, the evolution of mating strategies depends on the strength of female sperm limitation, so that when sperm limitation is strong, males are often reluctant and choosy, whereas females tend to accept available matings. Male reluctance evolves because a male's benefit per mating diminishes rapidly as he mates too often, hence losing out in the process of sperm competition as he spends much of his resources on mating costs rather than ejaculate production. When sperm limitation is weaker, females become more reluctant and males are more eager to mate. The model thus suggests that reversed sex roles are plausible outcomes of polyandry and limited sperm production. Implications for empirical studies of mate choice are discussed.
Collapse
Affiliation(s)
- Mikael Puurtinen
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014, Finland .,Centre of Excellence in Biological Interactions, University of Jyvaskyla, PO Box 35, 40014, Finland
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014, Finland
| |
Collapse
|