1
|
Kuszewska K, Woloszczuk A, Woyciechowski M. Reproductive Cessation and Post-Reproductive Lifespan in Honeybee Workers. BIOLOGY 2024; 13:287. [PMID: 38785769 PMCID: PMC11117506 DOI: 10.3390/biology13050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The post-reproductive lifespan is an evolutionary enigma because the cessation of reproduction in animals seems contrary to the maximization of Darwinian fitness. Several theories aim to explain the evolution of menopause, one of which suggests that females of a certain age receive more fitness benefits via indirect selection (kin selection) than they would directly from continuing reproduction. Post-reproductive lifespans are not very common in nature but have been described in humans, nonhuman primates, a few species of toothed whales, guppies, and in some insect societies consisting of clonal colony members, such as aphid and ant societies. Here, we provide evidence that menopause also exists in honeybee societies. Our study shows that workers with a short life expectancy (older and/or injured workers) invest fewer resources and less time in their own reproduction than workers with a long life expectancy (younger and/or uninjured workers), even if their colony is hopelessly queenless. These results are consistent with the kin selection explanation for the evolution of menopause and help us understand the net effects of relatedness and social cooperation in animals.
Collapse
Affiliation(s)
- Karolina Kuszewska
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Anna Woloszczuk
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Michal Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Zavodska R, Sehadova H. The rate of DNA synthesis in ovaries, fat body cells, and pericardial cells of the bumblebee ( Bombus terrestris) depends on the stage of ovarian maturation. Front Physiol 2023; 14:1034584. [PMID: 37113694 PMCID: PMC10126488 DOI: 10.3389/fphys.2023.1034584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Bumblebees are important pollinators of plants worldwide and they are kept for commercial pollination. By studying the process of oogenesis, we can understand their ontogenetic developmental strategy and reproduction. We describe the anatomy of the ovary of the bumblebee Bombus terrestris using 3D reconstruction by confocal microscopy. We found that an oocyte is accompanied by 63 endopolyploidy nurse cells. The number of nurse cells nuclei decreased during oogenesis and the cells are finally absorbed by the oocyte. We monitored the rate of DNA synthesis in vivo during 12 h in ovaries, fat body, and pericardial cells in B. terrestris queens and workers of different ages. The DNA replication activity was detected on the basis of visualization of incorporated 5-ethynyl-2'-deoxyuridine. DNA synthesis detected in differentiated nurse cells indicated endoreplication of nuclei. The dynamics of mitotic activity varied among different ages and statuses of queens. In 3- to 8-day-old virgin queens, intense mitotic activity was observed in all tissue types investigated. This might be related to the initial phase of oogenesis and the development of the hepato-nephrotic system. In 15- to 20-day-old mated pre-diapause queens, DNA synthesis was exclusively observed in the ovaries, particularly in the germarium and the anterior part of the vitellarium. In 1-year-old queens, replication occurred only in the peritoneal sheath of ovaries and in several cells of the fat body. The similar DNA synthesis patterns in the ovaries of mated pre-diapause queens, ovipositing workers, and non-egg-laying workers show that mitotic activity is related not only to age but also to the stage of ovarian maturation and is relatively independent of caste affiliation.
Collapse
Affiliation(s)
- Radka Zavodska
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czechia
- Faculty of Education, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Hana Sehadova
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| |
Collapse
|
3
|
Aamidor SE, Cardoso-Júnior CAM, Harianto J, Nowell CJ, Cole L, Oldroyd BP, Ronai I. Reproductive plasticity and oogenesis in the queen honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104347. [PMID: 34902433 DOI: 10.1016/j.jinsphys.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In the honey bee (Apis mellifera), queen and worker castes originate from identical genetic templates but develop into different phenotypes. Queens lay up to 2000 eggs daily whereas workers are sterile in the queen's presence. Periodically queens stop laying: during swarming, when resources are scarce in winter, and when they are confined to a cage by beekeepers. We used confocal microscopy and gene expression assays to investigate the control of oogenesis in the ovaries of honey bee queens that were caged inside and outside the colony. We find evidence that queens use a different combination of 'checkpoints' to regulate oogenesis compared to honey bee workers and other insect species. However, both queen and worker castes likely use the same programmed cell death pathways to terminate oocyte development at their caste-specific checkpoints. Our results also suggest that a key factor driving the termination of oogenesis in queens is nutritional stress. Thus, queens may regulate oogenesis via the same regulatory pathways that were utilised by ancestral solitary species but likely have adjusted physiological checkpoints to suit their highly-derived life history.
Collapse
Affiliation(s)
- Sarah E Aamidor
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia.
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celulare Bioagentes Patogênicos, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Januar Harianto
- School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Louise Cole
- Microbial Imaging Facility, I3 Institute, Faculty of Science, The University of Technology Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Isobel Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Cardoso-Júnior CAM, Oldroyd BP, Ronai I. Vitellogenin expression in the ovaries of adult honeybee workers provides insights into the evolution of reproductive and social traits. INSECT MOLECULAR BIOLOGY 2021; 30:277-286. [PMID: 33427366 DOI: 10.1111/imb.12694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Social insects are notable for having two female castes that exhibit extreme differences in their reproductive capacity. The molecular basis of these differences is largely unknown. Vitellogenin (Vg) is a powerful antioxidant and insulin-signalling regulator used in oocyte development. Here we investigate how Royal Jelly (the major food of honeybee queens) and queen mandibular pheromone (a major regulator of worker fertility), affect the longevity and reproductive status of honey bee workers, the expression of Vg, its receptor VgR and associated regulatory proteins. We find that Vg is expressed in the ovaries of workers and that workers fed a queen diet of Royal Jelly have increased Vg expression in the ovaries. Surprisingly, we find that expression of Vg is not associated with ovary activation in workers, suggesting that this gene has potentially acquired non-reproductive functions. Therefore, Vg expression in the ovaries of honeybee workers provides further support for the Ovarian Ground Plan Hypothesis, which argues that genes implicated in the regulation of reproduction have been co-opted to regulate behavioural differences between queens and workers.
Collapse
Affiliation(s)
- C A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| | - I Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Garcia Bulle Bueno F, Gloag R, Latty T, Ronai I. Irreversible sterility of workers and high-volume egg production by queens in the stingless bee Tetragonula carbonaria. J Exp Biol 2020; 223:jeb230599. [PMID: 32737215 DOI: 10.1242/jeb.230599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Social insects are characterised by a reproductive division of labour between queens and workers. However, in the majority of social insect species, the workers are only facultatively sterile. The Australian stingless bee Tetragonula carbonaria is noteworthy as workers never lay eggs. Here, we describe the reproductive anatomy of Tcarbonaria workers, virgin queens and mated queens. We then conduct the first experimental test of absolute worker sterility in the social insects. Using a controlled microcolony environment, we investigate whether the reproductive capacity of adult workers can be rescued by manipulating the workers' social environment and diet. The ovaries of T. carbonaria workers that are queenless and fed unrestricted, highly nutritious royal jelly remain non-functional, indicating they are irreversibly sterile and that ovary degeneration is fixed prior to adulthood. We suggest that Tcarbonaria might have evolved absolute worker sterility because colonies are unlikely to ever be queenless.
Collapse
Affiliation(s)
- Francisco Garcia Bulle Bueno
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Rosalyn Gloag
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Tanya Latty
- Insect Behaviour and Ecology Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Simons MA, Smith AR. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens. PeerJ 2018; 6:e4415. [PMID: 29479503 PMCID: PMC5824676 DOI: 10.7717/peerj.4415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.
Collapse
Affiliation(s)
- Meagan A Simons
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| |
Collapse
|