1
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
2
|
Strand EL, Wong KH, Farraj A, Gray S, McMenamin A, Putnam HM. Coral species-specific loss and physiological legacy effects are elicited by an extended marine heatwave. J Exp Biol 2024; 227:jeb246812. [PMID: 38774956 DOI: 10.1242/jeb.246812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity, with potentially catastrophic consequences for marine ecosystems such as coral reefs. An extended heatwave and recovery time-series that incorporates multiple stressors and is environmentally realistic can provide enhanced predictive capacity for performance under climate change conditions. We exposed common reef-building corals in Hawai'i, Montipora capitata and Pocillopora acuta, to a 2-month period of high temperature and high PCO2 conditions or ambient conditions in a factorial design, followed by 2 months of ambient conditions. High temperature, rather than high PCO2, drove multivariate physiology shifts through time in both species, including decreases in respiration rates and endosymbiont densities. Pocillopora acuta exhibited more significantly negatively altered physiology, and substantially higher bleaching and mortality than M. capitata. The sensitivity of P. acuta appears to be driven by higher baseline rates of photosynthesis paired with lower host antioxidant capacity, creating an increased sensitivity to oxidative stress. Thermal tolerance of M. capitata may be partly due to harboring a mixture of Cladocopium and Durusdinium spp., whereas P. acuta was dominated by other distinct Cladocopium spp. Only M. capitata survived the experiment, but physiological state in heatwave-exposed M. capitata remained significantly diverged at the end of recovery relative to individuals that experienced ambient conditions. In future climate scenarios, particularly marine heatwaves, our results indicate a species-specific loss of corals that is driven by baseline host and symbiont physiological differences as well as Symbiodiniaceae community compositions, with the surviving species experiencing physiological legacies that are likely to influence future stress responses.
Collapse
Affiliation(s)
- Emma L Strand
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA
| | - Alexa Farraj
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Sierra Gray
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biology, University of Victoria, Victoria, BC, Canada, V8P 5C2
| | - Ana McMenamin
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Brown KT, Lenz EA, Glass BH, Kruse E, McClintock R, Drury C, Nelson CE, Putnam HM, Barott KL. Divergent bleaching and recovery trajectories in reef-building corals following a decade of successive marine heatwaves. Proc Natl Acad Sci U S A 2023; 120:e2312104120. [PMID: 38113265 PMCID: PMC10756270 DOI: 10.1073/pnas.2312104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual's lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai'i, Montipora capitata and Porites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies of P. compressa exhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptible M. capitata repeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically, M. capitata displayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely, P. compressa appeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene.
Collapse
Affiliation(s)
- Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Elizabeth A. Lenz
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Elisa Kruse
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Rayna McClintock
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Crawford Drury
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne‘ohe, HI96744
| | - Craig E. Nelson
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI96822
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI02881
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
5
|
Coffroth MA, Buccella LA, Eaton KM, Lasker HR, Gooding AT, Franklin H. What makes a winner? Symbiont and host dynamics determine Caribbean octocoral resilience to bleaching. SCIENCE ADVANCES 2023; 9:eadj6788. [PMID: 37992160 PMCID: PMC10664981 DOI: 10.1126/sciadv.adj6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genus Breviolum. Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont's resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs.
Collapse
Affiliation(s)
| | - Louis A. Buccella
- Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo NY 14260, USA
| | - Katherine M. Eaton
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Howard R. Lasker
- Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
| | - Alyssa T. Gooding
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Harleena Franklin
- Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
González-Barrios FJ, Estrada-Saldívar N, Pérez-Cervantes E, Secaira-Fajardo F, Álvarez-Filip L. Legacy effects of anthropogenic disturbances modulate dynamics in the world's coral reefs. GLOBAL CHANGE BIOLOGY 2023; 29:3285-3303. [PMID: 36932916 DOI: 10.1111/gcb.16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/16/2023]
Abstract
Rapidly changing conditions alter disturbance patterns, highlighting the need to better understand how the transition from pulse disturbances to more persistent stress will impact ecosystem dynamics. We conducted a global analysis of the impacts of 11 types of disturbances on reef integrity using the rate of change of coral cover as a measure of damage. Then, we evaluated how the magnitude of the damage due to thermal stress, cyclones, and diseases varied among tropical Atlantic and Indo-Pacific reefs and whether the cumulative impact of thermal stress and cyclones was able to modulate the responses of reefs to future events. We found that reef damage largely depends on the condition of a reef before a disturbance, disturbance intensity, and biogeographic region, regardless of the type of disturbance. Changes in coral cover after thermal stress events were largely influenced by the cumulative stress of past disturbances and did not depend on disturbance intensity or initial coral cover, which suggests that an ecological memory is present within coral communities. In contrast, the effect of cyclones (and likely other physical impacts) was primarily modulated by the initial reef condition and did not appear to be influenced by previous impacts. Our findings also underscore that coral reefs can recover if stressful conditions decrease, yet the lack of action to reduce anthropogenic impacts and greenhouse gas emissions continues to trigger reef degradation. We uphold that evidence-based strategies can guide managers to make better decisions to prepare for future disturbances.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | | | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| |
Collapse
|
7
|
Walker NS, Nestor V, Golbuu Y, Palumbi SR. Coral bleaching resistance variation is linked to differential mortality and skeletal growth during recovery. Evol Appl 2023; 16:504-517. [PMID: 36793702 PMCID: PMC9923480 DOI: 10.1111/eva.13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of global coral bleaching has focused much attention on the possibility of interventions to increase heat resistance. However, if high heat resistance is linked to fitness tradeoffs that may disadvantage corals in other areas, then a more holistic view of heat resilience may be beneficial. In particular, overall resilience of a species to heat stress is likely to be the product of both resistance to heat and recovery from heat stress. Here, we investigate heat resistance and recovery among individual Acropora hyacinthus colonies in Palau. We divided corals into low, moderate, and high heat resistance categories based on the number of days (4-9) needed to reach significant pigmentation loss due to experimental heat stress. Afterward, we deployed corals back onto a reef in a common garden 6-month recovery experiment that monitored chlorophyll a, mortality, and skeletal growth. Heat resistance was negatively correlated with mortality during early recovery (0-1 month) but not late recovery (4-6 months), and chlorophyll a concentration recovered in heat-stressed corals by 1-month postbleaching. However, moderate-resistance corals had significantly greater skeletal growth than high-resistance corals by 4 months of recovery. High- and low-resistance corals on average did not exhibit skeletal growth within the observed recovery period. These data suggest complex tradeoffs may exist between coral heat resistance and recovery and highlight the importance of incorporating multiple aspects of resilience into future reef management programs.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāneʻoheHawaiiUSA
| | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
8
|
Hernández Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Caballero-Pérez J, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic differences between bleached and unbleached hydrozoan Millepora complanata following the 2015-2016 ENSO in the Mexican Caribbean. PeerJ 2023; 11:e14626. [PMID: 36691486 PMCID: PMC9864129 DOI: 10.7717/peerj.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/02/2022] [Indexed: 01/19/2023] Open
Abstract
The 2015-2016 El Niño-southern oscillation or "ENSO" caused many M. complanata colonies that live in the Mexican Caribbean to experience extensive bleaching. The purpose of this work was to analyze the effect of bleaching on the cellular response of M. complanata, employing a transcriptomic approach with RNA-seq. As expected, bleached specimens contained a significantly lower chlorophyll content than unbleached hydrocorals. The presence of algae of the genera Durusdinium and Cladocopium was only found in tissues of unbleached M. complanata, which could be associated to the greater resistance that these colonies exhibited during bleaching. We found that 299 genes were differentially expressed in M. complanata bleached colonies following the 2015-2016 ENSO in the Mexican Caribbean. The differential expression analysis of bleached M. complanata specimens evidenced enriched terms for functional categories, such as ribosome, RNA polymerase and basal transcription factors, chaperone, oxidoreductase, among others. Our results suggest that the heat-shock response mechanisms displayed by M. complanata include: an up-regulation of endogenous antioxidant defenses; a higher expression of heat stress response genes; up-regulation of transcription-related genes, higher expression of genes associated to transport processes, inter alia. This study constitutes the first differential gene expression analysis of the molecular response of a reef-forming hydrozoan during bleaching.
Collapse
Affiliation(s)
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| |
Collapse
|
9
|
Vega Thurber R, Schmeltzer ER, Grottoli AG, van Woesik R, Toonen RJ, Warner M, Dobson KL, McLachlan RH, Barott K, Barshis DJ, Baumann J, Chapron L, Combosch DJ, Correa AMS, DeCarlo TM, Hagedorn M, Hédouin L, Hoadley K, Felis T, Ferrier-Pagès C, Kenkel C, Kuffner IB, Matthews J, Medina M, Meyer C, Oster C, Price J, Putnam HM, Sawall Y. Unified methods in collecting, preserving, and archiving coral bleaching and restoration specimens to increase sample utility and interdisciplinary collaboration. PeerJ 2022; 10:e14176. [PMID: 36345483 PMCID: PMC9636870 DOI: 10.7717/peerj.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.
Collapse
Affiliation(s)
- Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R. Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Andréa G. Grottoli
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Fl, United States
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States
| | - Mark Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Kerri L. Dobson
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Rowan H. McLachlan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States,School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Katie Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Justin Baumann
- Biology Department, Bowdoin College, Brunswick, ME, United States
| | - Leila Chapron
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | | | | | - Thomas M. DeCarlo
- College of Natural and Computational Sciences, Hawai’i Pacific University, Honolulu, HI, United States
| | - Mary Hagedorn
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kāne’ohe, HI, United States,Conservation Biology Institute, Smithsonian, Kāne’ohe, HI, United States
| | - Laetitia Hédouin
- Centre de Recherches Insulaires et Observatoire de l’Environnement, Chargée de Recherches CNRS, Papetō’ai, Moorea, French Polynesia
| | - Kenneth Hoadley
- Department of Biological Sciences, University of Alabama – Tuscaloosa, Tuscaloosa, AL, United States
| | - Thomas Felis
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Jennifer Matthews
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian, Washington DC, United States
| | - Corinna Oster
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - James Price
- School of Earth Sciences, Ohio State University, Columbus, OH, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences, St. George’s, St. George’s, Bermuda
| |
Collapse
|
10
|
Walker NS, Cornwell BH, Nestor V, Armstrong KC, Golbuu Y, Palumbi SR. Persistence of phenotypic responses to short-term heat stress in the tabletop coral Acropora hyacinthus. PLoS One 2022; 17:e0269206. [PMID: 36084033 PMCID: PMC9462741 DOI: 10.1371/journal.pone.0269206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 12/26/2022] Open
Abstract
Widespread mapping of coral thermal resilience is essential for developing effective management strategies and requires replicable and rapid multi-location assays of heat resistance and recovery. One- or two-day short-term heat stress experiments have been previously employed to assess heat resistance, followed by single assays of bleaching condition. We tested the reliability of short-term heat stress resistance, and linked resistance and recovery assays, by monitoring the phenotypic response of fragments from 101 Acropora hyacinthus colonies located in Palau (Micronesia) to short-term heat stress. Following short-term heat stress, bleaching and mortality were recorded after 16 hours, daily for seven days, and after one and two months of recovery. To follow corals over time, we utilized a qualitative, non-destructive visual bleaching score metric that correlated with standard symbiont retention assays. The bleaching state of coral fragments 16 hours post-heat stress was highly indicative of their state over the next 7 days, suggesting that symbiont population sizes within corals may quickly stabilize post-heat stress. Bleaching 16 hours post-heat stress predicted likelihood of mortality over the subsequent 3–5 days, after which there was little additional mortality. Together, bleaching and mortality suggested that rapid assays of the phenotypic response following short-term heat stress were good metrics of the total heat treatment effect. Additionally, our data confirm geographic patterns of intraspecific variation in Palau and show that bleaching severity among colonies was highly correlated with mortality over the first week post-stress. We found high survival (98%) and visible recovery (100%) two months after heat stress among coral fragments that survived the first week post-stress. These findings help simplify rapid, widespread surveys of heat sensitivity in Acropora hyacinthus by showing that standardized short-term experiments can be confidently assayed after 16 hours, and that bleaching sensitivity may be linked to subsequent survival using experimental assessments.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
- * E-mail:
| | - Brendan H. Cornwell
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| | | | - Katrina C. Armstrong
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| | | | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, California, United States of America
| |
Collapse
|
11
|
Ip JCH, Zhang Y, Xie JY, Yeung YH, Qiu JW. Comparative transcriptomics of two coral holobionts collected during the 2017 El Niño heat wave reveal differential stress response mechanisms. MARINE POLLUTION BULLETIN 2022; 182:114017. [PMID: 35963227 DOI: 10.1016/j.marpolbul.2022.114017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Although coral species exhibit differential susceptibility to stressors, little is known about the underlying molecular mechanisms. Here we compared scleractinian corals Montipora peltiformis and Platygyra carnosa collected during the 2017 El Niño heat wave. Zooxanthellae density and chlorophyll a content declined and increased substantially during and after heat stress event, respective. However, the magnitude of change was larger in M. peltiformis. Transcriptome analysis showed that heat-stressed corals corresponded to metabolic depression and catabolism of amino acids in both hosts which might promote their survival. However, only M. peltiformis has developed the bleached coral phenotype with corresponding strong stress- and immune-related responses in the host and symbiont, and strong suppression of photosynthesis-related genes in the symbiont. Overall, our study reveals differences among species in the homeostatic capacity to prevent the development of the bleached phenotype under environmental stressors, eventually determining their likelihood of survival in the warming ocean.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Yanjie Zhang
- School of Life Sciences, Hainan University, Haikou, China.
| | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.
| |
Collapse
|
12
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Synergistic Effect of Elevated Temperature and Light Stresses on Physiology of Pocillopora acuta from Different Environments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing levels of greenhouse gases lead to ocean warming, which affects a range of marine organisms. Corals live in a narrow temperature range and become stressed when the temperatures change. Bleaching occurs when the temperature exceeds the coral’s threshold, and can be severe when this is combined with other stressors such as light. In order to understand how temperature and light affect corals in their physiological responses and photosynthetic performance, Pocillopora acuta from Maiton Island (MT) and Panwa Cape (PW), representing different environments, were investigated. The results show that light and temperature had by regime different effects on Symbiodiniaceae photosynthesis and the coral growth rate. There was a synergistic effect of elevated temperature and light on photosynthesis, as observed in the photochemical efficiency and pigment contents, suggesting photo-damage. A higher growth rate in Panwa corals was observed in control, and while elevated temperature reduced coral growth. Elevated temperature affected the Panwa coral less, suggesting that corals from this regime might be able to recover when the temperature returns to normal. This information is important for predicting the coral responses to elevated temperature especially in the summer, as regards the possibility of coral bleaching.
Collapse
|
14
|
Thomas L, Underwood JN, Rose NH, Fuller ZL, Richards ZT, Dugal L, Grimaldi CM, Cooke IR, Palumbi SR, Gilmour JP. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. SCIENCE ADVANCES 2022; 8:eabl9185. [PMID: 35476443 PMCID: PMC9045720 DOI: 10.1126/sciadv.abl9185] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.
Collapse
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Corresponding author.
| | - Jim N. Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Zachary L. Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zoe T. Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Collections and Research, Western Australian Museum, Welshpool, Australia
| | - Laurence Dugal
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Ira R. Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Stephen R. Palumbi
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, USA
| | - James P. Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| |
Collapse
|
15
|
Zhang Y, Ip JCH, Xie JY, Yeung YH, Sun Y, Qiu JW. Host-symbiont transcriptomic changes during natural bleaching and recovery in the leaf coral Pavona decussata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150656. [PMID: 34597574 DOI: 10.1016/j.scitotenv.2021.150656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Coral bleaching has become a major threat to coral reefs worldwide, but for most coral species little is known about their resilience to environmental changes. We aimed to understand the gene expressional regulation underlying natural bleaching and recovery in Pavona decussata, a dominant species of scleractinian coral in the northern South China Sea. Analyzing samples collected in 2017 from the field revealed distinct zooxanthellae density, chlorophyll a concentration and transcriptomic signatures corresponding to changes in health conditions of the coral holobiont. In the host, normal-looking tissues of partially bleached colonies were frontloaded with stress responsive genes, as indicated by upregulation of immune defense, response to endoplasmic reticulum, and oxidative stress genes. Bleaching was characterized by upregulation of apoptosis-related genes which could cause a reduction in algal symbionts, and downregulation of genes involved in stress responses and metabolic processes. The transcription factors stat5b and irf1 played key roles in bleaching by regulating immune and apoptosis pathways. Recovery from bleaching was characterized by enrichment of pathways involved in mitosis, DNA replication, and recombination for tissue repairing, as well as restoration of energy and metabolism. In the symbionts, bleaching corresponded to imbalance in photosystems I and II activities which enhanced oxidative stress and limited energy production and nutrient assimilation. Overall, our study revealed distinct gene expressional profiles and regulation in the different phases of the bleaching and recovery process, and provided new insight into the molecular mechanisms underlying the holobiont's resilience that may determine the species' fate in response to global and regional environmental changes.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - James Y Xie
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Yanan Sun
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, Villela HDM, Pereira LM, Vilela CLS, Rosado JG, Cardoso PM, Rosado PM, Assis JM, Duarte GAS, Perna G, Rosado AS, Macrae A, Dupont CL, Nelson KE, Sweet MJ, Voolstra CR, Peixoto RS. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. SCIENCE ADVANCES 2021; 7:7/33/eabg3088. [PMID: 34389536 PMCID: PMC8363143 DOI: 10.1126/sciadv.abg3088] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.
Collapse
Affiliation(s)
- Erika P Santoro
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ricardo M Borges
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Josh L Espinoza
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
- Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Infectious Diseases and Global Health, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Camila S M A Messias
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena D M Villela
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Leandro M Pereira
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Caren L S Vilela
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João G Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pedro M Cardoso
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Phillipe M Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana M Assis
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo A S Duarte
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Perna
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alexandre S Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrew Macrae
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Christopher L Dupont
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
| | - Karen E Nelson
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
| | - Michael J Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Raquel S Peixoto
- Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Metabolomic signatures of coral bleaching history. Nat Ecol Evol 2021; 5:495-503. [PMID: 33558733 DOI: 10.1038/s41559-020-01388-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Coral bleaching has a profound impact on the health and function of reef ecosystems, but the metabolomic effects of coral bleaching are largely uncharacterized. Here, untargeted metabolomics was used to analyse pairs of adjacent Montipora capitata corals that had contrasting bleaching phenotypes during a severe bleaching event in 2015. When these same corals were sampled four years later while visually healthy, there was a strong metabolomic signature of bleaching history. This was primarily driven by betaine lipids from the symbiont, where corals that did not bleach were enriched in saturated lyso-betaine lipids. Immune modulator molecules were also altered by bleaching history in both the coral host and the algal symbiont, suggesting a shared role in partner choice and bleaching response. Metabolomics from a separate set of validation corals was able to predict the bleaching phenotype with 100% accuracy. Experimental temperature stress induced phenotype-specific responses, which magnified differences between historical bleaching phenotypes. These findings indicate that natural bleaching susceptibility is manifested in the biochemistry of both the coral animal and its algal symbiont. This metabolome difference is stable through time and results in different physiological responses to temperature stress. This work provides insight into the biochemical mechanisms of coral bleaching and presents a valuable new tool for resilience-based reef restoration.
Collapse
|
18
|
Fifer J, Bentlage B, Lemer S, Fujimura AG, Sweet M, Raymundo LJ. Going with the flow: How corals in high-flow environments can beat the heat. Mol Ecol 2021; 30:2009-2024. [PMID: 33655552 DOI: 10.1111/mec.15869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.
Collapse
Affiliation(s)
- James Fifer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - Bastian Bentlage
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Laurie J Raymundo
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| |
Collapse
|
19
|
Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol Ecol 2021; 30:1381-1397. [PMID: 33503298 DOI: 10.1111/mec.15820] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity can serve as a stepping stone towards adaptation. Recently, studies have shown that gene expression contributes to emergent stress responses such as thermal tolerance, with tolerant and susceptible populations showing distinct transcriptional profiles. However, given the dynamic nature of gene expression, interpreting transcriptomic results in a way that elucidates the functional connection between gene expression and the observed stress response is challenging. Here, we present a conceptual framework to guide interpretation of gene expression reaction norms in the context of stress tolerance. We consider the evolutionary and adaptive potential of gene expression reaction norms and discuss the influence of sampling timing, transcriptomic resilience, as well as complexities related to life history when interpreting gene expression dynamics and how these patterns relate to host tolerance. We highlight corals as a case study to demonstrate the value of this framework for non-model systems. As species face rapidly changing environmental conditions, modulating gene expression can serve as a mechanistic link from genetic and cellular processes to the physiological responses that allow organisms to thrive under novel conditions. Interpreting how or whether a species can employ gene expression plasticity to ensure short-term survival will be critical for understanding the global impacts of climate change across diverse taxa.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA, USA
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Sara J S Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.,FAS Informatics, Harvard University, Cambridge, MA, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
20
|
Romero-Torres M, Acosta A, Palacio-Castro AM, Treml EA, Zapata FA, Paz-García DA, Porter JW. Coral reef resilience to thermal stress in the Eastern Tropical Pacific. GLOBAL CHANGE BIOLOGY 2020; 26:3880-3890. [PMID: 32315464 DOI: 10.1111/gcb.15126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño-Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño-induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan-tropical collapse of coral reefs. During the 1982-1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997-1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970-2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970-2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño-stressed conditions, often recovering from these events in 10-15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near-term future climate-change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.
Collapse
Affiliation(s)
- Mauricio Romero-Torres
- Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia
- Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD), Bogotá, Colombia
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - Alberto Acosta
- Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana M Palacio-Castro
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL, USA
| | - Eric A Treml
- School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic., Australia
| | - Fernando A Zapata
- Grupo de Investigación en Ecología de Arrecifes Coralinos, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - David A Paz-García
- CONACyT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico
| | - James W Porter
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
22
|
Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, Bruyn J, McCulloch MT. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat Commun 2019; 10:4031. [PMID: 31530800 PMCID: PMC6748961 DOI: 10.1038/s41467-019-12065-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/13/2019] [Indexed: 11/27/2022] Open
Abstract
Naturally heat-resistant coral populations hold significant potential for facilitating coral reef survival under rapid climate change. However, it remains poorly understood whether they can acclimatize to ocean warming when superimposed on their already thermally-extreme habitats. Furthermore, it is unknown whether they can maintain their heat tolerance upon larval dispersal or translocation to cooler reefs. We test this in a long-term mesocosm experiment using stress-resistant corals from thermally-extreme reefs in NW Australia. We show that these corals have a remarkable ability to maintain their heat tolerance and health despite acclimation to 3-6 °C cooler, more stable temperatures over 9 months. However, they are unable to increase their bleaching thresholds after 6-months acclimation to + 1 °C warming. This apparent rigidity in the thermal thresholds of even stress-resistant corals highlights the increasing vulnerability of corals to ocean warming, but provides a rationale for human-assisted migration to restore cooler, degraded reefs with corals from thermally-extreme reefs.
Collapse
Affiliation(s)
- Verena Schoepf
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Steven A Carrion
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - Svenja M Pfeifer
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Melissa Naugle
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Laurence Dugal
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Jennifer Bruyn
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Malcolm T McCulloch
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
Wall CB, Ritson‐Williams R, Popp BN, Gates RD. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. LIMNOLOGY AND OCEANOGRAPHY 2019; 64:2011-2028. [PMID: 31598010 PMCID: PMC6774332 DOI: 10.1002/lno.11166] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/24/2018] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Ocean warming and the increased prevalence of coral bleaching events threaten coral reefs. However, the biology of corals during and following bleaching events under field conditions is poorly understood. We examined bleaching and postbleaching recovery in Montipora capitata and Porites compressa corals that either bleached or did not bleach during a 2014 bleaching event at three reef locations in Kāne'ohe Bay, O'ahu, Hawai'i. We measured changes in chlorophylls, tissue biomass, and nutritional plasticity using stable isotopes (δ 13C, δ 15N). Coral traits showed significant variation among periods, sites, bleaching conditions, and their interactions. Bleached colonies of both species had lower chlorophyll and total biomass, and while M. capitata chlorophyll and biomass recovered 3 months later, P. compressa chlorophyll recovery was location dependent and total biomass of previously bleached colonies remained low. Biomass energy reserves were not affected by bleaching, instead M. capitata proteins and P. compressa biomass energy and lipids declined over time and P. compressa lipids were site specific during bleaching recovery. Stable isotope analyses did not indicate increased heterotrophic nutrition in bleached colonies of either species, during or after thermal stress. Instead, mass balance calculations revealed that variations in δ 13C values reflect biomass compositional change (i.e., protein : lipid : carbohydrate ratios). Observed δ 15N values reflected spatiotemporal variability in nitrogen sources in both species and bleaching effects on symbiont nitrogen demand in P. compressa. These results highlight the dynamic responses of corals to natural bleaching and recovery and identify the need to consider the influence of biomass composition in the interpretation of isotopic values in corals.
Collapse
Affiliation(s)
- Christopher B. Wall
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at MānoaKāne‘oheHawai‘i
| | - Raphael Ritson‐Williams
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at MānoaKāne‘oheHawai‘i
- Invertebrate Zoology DepartmentCalifornia Academy of SciencesSan FranciscoCalifornia
| | - Brian N. Popp
- Department of Earth SciencesUniversity of Hawai‘i at MānoaHonoluluHawai‘i
| | - Ruth D. Gates
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at MānoaKāne‘oheHawai‘i
| |
Collapse
|
24
|
Thomas L, López EH, Morikawa MK, Palumbi SR. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol Ecol 2019; 28:3371-3382. [DOI: 10.1111/mec.15143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre Perth WA Australia
- Oceans Graduate School The UWA Oceans Institute, The University of Western Australia Perth WA Australia
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Elora H. López
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Megan K. Morikawa
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| | - Stephen R. Palumbi
- Biology Department, Hopkins Marine Station Stanford University Stanford CA USA
| |
Collapse
|
25
|
Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient Availability and Metabolism Affect the Stability of Coral-Symbiodiniaceae Symbioses. Trends Microbiol 2019; 27:678-689. [PMID: 30987816 DOI: 10.1016/j.tim.2019.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Coral reefs rely upon the highly optimized coral-Symbiodiniaceae symbiosis, making them sensitive to environmental change and susceptible to anthropogenic stress. Coral bleaching is predominantly attributed to photo-oxidative stress, yet nutrient availability and metabolism underpin the stability of symbioses. Recent studies link symbiont proliferation under nutrient enrichment to bleaching; however, the interactions between nutrients and symbiotic stability are nuanced. Here, we demonstrate how bleaching is regulated by the forms and ratios of available nutrients and their impacts on autotrophic carbon metabolism, rather than algal symbiont growth. By extension, historical nutrient conditions mediate host-symbiont compatibility and bleaching tolerance over proximate and evolutionary timescales. Renewed investigations into the coral nutrient metabolism will be required to truly elucidate the cellular mechanisms leading to coral bleaching.
Collapse
Affiliation(s)
- Luke A Morris
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia. https://twitter.com/ReefLuke
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. https://twitter.com/reefgenomics
| | - Kate M Quigley
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia. https://twitter.com/la__cientifica
| | - David G Bourne
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia.
| |
Collapse
|
26
|
Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1096-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Thomas L, Palumbi SR. The genomics of recovery from coral bleaching. Proc Biol Sci 2018; 284:rspb.2017.1790. [PMID: 29070726 DOI: 10.1098/rspb.2017.1790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ecological damage from periodic environmental extremes is often repaired in resilient ecosystems, but the rate of return to a non-damaged state is critical. Measures of recovery of communities include biomass, productivity and diversity, while measures of recovery of individuals tend to focus on physiological conditions and the return to normal metabolic functioning. Transcriptomics offers a window into the entire physiology of the organism under stress and can represent a holistic view of organismal recovery. In this study, we track the recovery of seven colonies of Acropora hyacinthus following a natural bleaching event. We identified a large environmental stress response in the field that involved approximately 20% of the host transcriptome. The transcriptome remained largely perturbed for at least six months after temperatures had cooled and four months after symbiont populations had recovered. Moreover, a small set of genes did not recover to previous expression levels even 12 months after the event, about the time that normal growth rates resumed. This study is among the first to incorporate transcriptomics into a longitudinal dataset of recovery from environmental stress. The data demonstrate large and lasting effects on coral physiology long after environmental conditions return to normal and symbiont populations recover.
Collapse
Affiliation(s)
- Luke Thomas
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Stephen R Palumbi
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
28
|
González AM, Prada CA, Ávila V, Medina M. Ecological Speciation in Corals. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|