1
|
Karkuzhali N, Edward YSJT, Chitra N, Senthilkumar M, Ramalingam J. Unveiling the diversity of gut microbes in green lacewings (Chrysopidae: Neuroptera) and their role as protagonist in nutrition. Arch Microbiol 2025; 207:100. [PMID: 40126663 DOI: 10.1007/s00203-025-04289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
Green lacewings (Chrysopidae; Neuroptera) plays a crucial role as predators against insect pests in diverse cropping systems. Larval chrysopids are predatory on mealybugs, aphids, scales, whiteflies, mites and eggs of many arthropods. Adults are palynoglycophagous and feed on nectar, pollen, and honeydew secreted by aphids. Many insects cannot synthesize necessary vitamins and amino acids on their own and depend on gut microbes. Microbes associated with chrysopid gut help them with balanced nutrition and ecological fitness to withstand extreme stresses, especially adult gut microbiota, which constitutes an indispensable part of nutrients in addition to reproduction. Except for yeast, microbes such as bacteria in the chrysopid larval and adult gut have not been extensively studied. This review aims to seek a comprehensive overview of the gut microbes present in the chrysopids and their role in improving the fitness of chrysopids through adequate nutrition. This will pave the way for further research on understanding the microbe-mediated metabolic activities, their role in toxin production, and the development of probiotic feed from the novel gut microbiota for improving the productivity of laboratory-reared chrysopids used in augmentative biological control of major pests in agricultural ecosystems.
Collapse
Affiliation(s)
- N Karkuzhali
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - N Chitra
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - J Ramalingam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Archer J, Hurst GDD, Hornett EA. Male-killer symbiont screening reveals novel associations in Adalia ladybirds. Access Microbiol 2023; 5:acmi000585.v3. [PMID: 37601442 PMCID: PMC10436010 DOI: 10.1099/acmi.0.000585.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 08/22/2023] Open
Abstract
While male-killing bacteria are known to infect across arthropods, ladybird beetles represent a hotspot for these symbioses. In some host species, there are multiple different symbionts that vary in presence and frequency between populations. To further our understanding of spatial and frequency variation, we tested for the presence of three male-killing bacteria: Wolbachia , Rickettsia and Spiroplasma , in two Adalia ladybird species from a previously unexplored UK population. The two-spot ladybird, A. bipunctata, is known to harbour all three male-killers, and we identified Spiroplasma infection in the Merseyside population for the first time. However, in contrast to previous studies on two-spot ladybirds from continental Europe, evidence from egg-hatch rates indicates the Spiroplasma strain present in the Merseyside population does not cause embryonic male-killing. In the related ten-spot ladybird, A. decempunctata, there is only one previous record of a male-killing symbiont, a Rickettsia , which we did not detect in the Merseyside sample. However, PCR assays indicated the presence of a Spiroplasma in a single A. decempunctata specimen. Marker sequence indicated that this Spiroplasma was divergent from that found in sympatric A. bipunctata. Genome sequencing of the Spiroplasma -infected A. decempunctata additionally revealed the presence of cobionts in the form of a Centistes parasitoid wasp and the parasitic fungi Beauveria. Further study of A. decempunctata from this population is needed to resolve whether it is the ladybird or wasp cobiont that harbours Spiroplasma , and to establish the phenotype of this strain. These data indicate first that microbial symbiont phenotype should not be assumed from past studies conducted in different locations, and second that cobiont presence may confound screening studies aimed to detect the frequency of a symbiont in field collected material from a focal host species.
Collapse
Affiliation(s)
- Jack Archer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 2023; 26:106842. [PMID: 37250803 PMCID: PMC10209535 DOI: 10.1016/j.isci.2023.106842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuo Ishii
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiou-Ruei Lin
- Tea Research and Extension Station, 326011 Chung-Hsing RD, Yangmei, Taoyuan, Taiwan, R.O.C
| | - Masatoshi Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
4
|
Richardson KM, Ross PA, Cooper BS, Conner WR, Schmidt T, Hoffmann AA. A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor. PLoS Biol 2023; 21:e3001879. [PMID: 36947547 PMCID: PMC10069767 DOI: 10.1371/journal.pbio.3001879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/03/2023] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.
Collapse
Affiliation(s)
- Kelly M Richardson
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, United State of America
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, United State of America
| | - Tom Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Herran B, Sugimoto TN, Watanabe K, Imanishi S, Tsuchida T, Matsuo T, Ishikawa Y, Kageyama D. Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS NEXUS 2022; 2:pgac293. [PMID: 36712932 PMCID: PMC9837667 DOI: 10.1093/pnasnexus/pgac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (OsdsxF ) while suppressing the male-specific variant (OsdsxM ), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.
Collapse
Affiliation(s)
| | | | - Kazuyo Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Shigeo Imanishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|
6
|
Arai H, Inoue MN, Kageyama D. Male-killing mechanisms vary between Spiroplasma species. Front Microbiol 2022; 13:1075199. [PMID: 36519169 PMCID: PMC9742256 DOI: 10.3389/fmicb.2022.1075199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 03/11/2024] Open
Abstract
Male-killing, a male-specific death of arthropod hosts during development, is induced by Spiroplasma (Mollicutes) endosymbionts of the Citri-Poulsonii and the Ixodetis groups, which are phylogenetically distant groups. Spiroplasma poulsonii induces male-killing in Drosophila melanogaster (Diptera) using the Spaid toxin that harbors ankyrin repeats, whereas little is known about the origin and mechanisms of male-killing induced by Spiroplasma ixodetis. Here, we analyzed the genome and the biological characteristics of a male-killing S. ixodetis strain sHm in the moth Homona magnanima (Tortricidae, Lepidoptera). Strain sHm harbored a 2.1 Mb chromosome and two potential plasmids encoding Type IV effectors, putatively involved in virulence and host-symbiont interactions. Moreover, sHm did not harbor the spaid gene but harbored 10 ankyrin genes that were homologous to those in other S. ixodetis strains. In contrast to the predominant existence of S. poulsonii in hemolymph, our quantitative PCR assays revealed a systemic distribution of strain sHm in H. magnanima, with particularly high titers in Malpighian tubules but low titers in hemolymph. Furthermore, transinfection assays confirmed that strain sHm can infect cultured cells derived from distantly related insects, namely Aedes albopictus (Diptera) and Bombyx mori (Lepidoptera). These results suggest different origins and characteristics of S. ixodetis- and S. poulsonii-induced male-killing.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
7
|
Hornett EA, Kageyama D, Hurst GDD. Sex determination systems as the interface between male-killing bacteria and their hosts. Proc Biol Sci 2022; 289:20212781. [PMID: 35414231 PMCID: PMC9005997 DOI: 10.1098/rspb.2021.2781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Arthropods host a range of sex-ratio-distorting selfish elements, including diverse maternally inherited endosymbionts that solely kill infected males. Male-killing heritable microbes are common, reach high frequency, but until recently have been poorly understood in terms of the host-microbe interaction. Additionally, while male killing should generate strong selection for host resistance, evidence of this has been scant. The interface of the microbe with host sex determination is integral to the understanding of how death is sex limited and how hosts can evolve evasion of male killing. We first review current knowledge of the mechanisms diverse endosymbionts use to induce male-specific death. We then examine recent evidence that these agents do produce intense selection for host nuclear suppressor elements. We argue, from our understanding of male-killing mechanisms, that suppression will commonly involve evolution of the host sex determination pathways and that the host's response to male-killing microbes thus represents an unrecognized driver of the diversity of arthropod sex determination. Further work is required to identify the genes and mechanisms responsible for male-killing suppression, which will both determine the components of sex determination (or other) systems associated with suppressor evolution, and allow insight into the mechanism of male killing itself.
Collapse
Affiliation(s)
- Emily A. Hornett
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK
- Vector Biology, LSTM, Liverpool L3 5QA, UK
| | | | - Gregory D. D. Hurst
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Yoshida K, Sanada-Morimura S, Huang SH, Tokuda M. Silence of the killers: discovery of male-killing suppression in a rearing strain of the small brown planthopper, Laodelphax striatellus. Proc Biol Sci 2021; 288:20202125. [PMID: 33468006 DOI: 10.1098/rspb.2020.2125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a 'late' male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 : 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.
Collapse
Affiliation(s)
- Kazuki Yoshida
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.,Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | | | - Shou-Horng Huang
- Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Chiayi 60044, Taiwan, People's Republic of China
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.,Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
9
|
Sontowski R, Gerth M, Richter S, Gruppe A, Schlegel M, van Dam NM, Bleidorn C. Infection Patterns and Fitness Effects of Rickettsia and Sodalis Symbionts in the Green Lacewing Chrysoperla carnea. INSECTS 2020; 11:insects11120867. [PMID: 33297293 PMCID: PMC7762206 DOI: 10.3390/insects11120867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacteria have occupied a wide range of habitats including insect hosts. There they can strongly affect host physiology and ecology in a positive or negative way. Bacteria living exclusively inside other organisms are called endosymbionts. They often establish a long-term and stable association with their host. Although more and more studies focus on endosymbiont–insect interactions, the group of Neuroptera is largely neglected in such studies. We were interested in the common green lacewing (Chrysoperla carnea), a representative of Neuroptera, which is mainly known for its use in biological pest control. We asked ourselves which endosymbionts are present in these lacewings. By screening natural and laboratory populations, we found that the endosymbiont Rickettsia is present in all populations but the symbiont Sodalis only occurred in laboratory populations. We were curious whether both endosymbionts affect reproduction success. Through establishing and studying green lacewing lines carrying different endosymbionts, we found that Rickettsia had no effect on the insect reproduction, while Sodalis reduced the number of eggs laid by lacewings, alone and in co-infections with Rickettsia. The economic and ecological importance of green lacewings in biological pest control warrants a more profound understanding of its biology, which might be strongly influenced by symbionts. Abstract Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts.
Collapse
Affiliation(s)
- Rebekka Sontowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Michael Gerth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Sandy Richter
- Department of Basic and Clinical Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RT, UK;
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Axel Gruppe
- Chair of Zoology—Entomology Group, Technical University of Munich, 85354 Freising, Germany;
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Animal Evolution and Biodiversity, Georg-Augustus-University, 37073 Göttingen, Germany
- Correspondence: ; Tel.: +49-5513925459
| |
Collapse
|
10
|
Masson F, Calderon‐Copete S, Schüpfer F, Vigneron A, Rommelaere S, Garcia‐Arraez MG, Paredes JC, Lemaitre B. Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cell Microbiol 2020; 22:e13156. [PMID: 31912942 PMCID: PMC7187355 DOI: 10.1111/cmi.13156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Spiroplasma poulsonii is a vertically transmitted endosymbiont of Drosophila melanogaster that causes male-killing, that is the death of infected male embryos during embryogenesis. Here, we report a natural variant of S. poulsonii that is efficiently vertically transmitted yet does not selectively kill males, but kills rather a subset of all embryos regardless of their sex, a phenotype we call 'blind-killing'. We show that the natural plasmid of S. poulsonii has an altered structure: Spaid, the gene coding for the male-killing toxin, is deleted in the blind-killing strain, confirming its function as a male-killing factor. Then we further investigate several hypotheses that could explain the sex-independent toxicity of this new strain on host embryos. As the second non-male-killing variant isolated from a male-killing original population, this new strain raises questions on how male-killing is maintained or lost in fly populations. As a natural knock-out of Spaid, which is unachievable yet by genetic engineering approaches, this variant also represents a valuable tool for further investigations on the male-killing mechanism.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sandra Calderon‐Copete
- Center for Integrative GenomicsLausanne Genomic Technologies FacilityLausanneSwitzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticut
| | - Samuel Rommelaere
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mario G. Garcia‐Arraez
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Juan C. Paredes
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
International Centre of Insect Physiology and Ecology (ICIPE)KasaraniNairobiKenya
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
11
|
Reynolds LA, Hornett EA, Jiggins CD, Hurst GDD. Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region. PeerJ 2019; 7:e7677. [PMID: 31592190 PMCID: PMC6777490 DOI: 10.7717/peerj.7677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Sex ratio distorting agents (maternally inherited symbionts and meiotically-driving sex chromosomes) are common in insects. When these agents rise to high frequencies they create strong population sex ratio bias and selection then favours mutations that act to restore the rare sex. Despite this strong selection pressure, the evolution of mutations that suppress sex ratio distorting elements appears to be constrained in many cases, where sex-biased populations persist for many generations. This scenario has been observed in the butterfly Hypolimnas bolina, where Wolbachia-mediated male killing endured for 800–1,000 generations across multiple populations before the evolution of suppression. Here we test the hypothesis that this evolutionary lag is the result of suppression being a multilocus trait requiring multiple mutations. Methods We developed genetic markers, based on conservation of synteny, for each H. bolina chromosome and verified coverage using recombinational mapping. We then used a Wolbachia-infected mapping family to assess each chromosome for the presence of loci required for male survival, as determined by the presence of markers in all surviving sons. Results Informative markers were obtained for each of the 31 chromosomes in H. bolina. The only marker that cosegregated with suppression was located on chromosome 25. A genomic region necessary for suppression has previously been located on this chromosome. We therefore conclude that a single genomic region of the H. bolina genome is necessary for male-killing suppression. Discussion The evolutionary lag observed in our system is not caused by a need for changes at multiple genomic locations. The findings favour hypotheses in which either multiple mutations are required within a single genomic region, or the suppressor mutation is a singularly rare event.
Collapse
Affiliation(s)
- Louise A Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emily A Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Yoshida K, Sanada‐Morimura S, Huang S, Tokuda M. Influences of two coexisting endosymbionts, CI-inducing Wolbachia and male-killing Spiroplasma, on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae). Ecol Evol 2019; 9:8214-8224. [PMID: 31380084 PMCID: PMC6662331 DOI: 10.1002/ece3.5392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female-biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male-killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male-killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single-infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double-infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double-infection state than in the single-infection state. In the double-infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma-infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Faculty of AgricultureSaga UniversitySagaJapan
- Kyushu Okinawa Agricultural Research CenterNAROKumamotoJapan
| | | | - Shou‐Horng Huang
- Chiayi Agricultural Experiment Station, Taiwan Agricultural Research InstituteCouncil of AgricultureChiayiTaiwan
| | | |
Collapse
|
13
|
Approximate Bayesian estimation of coevolutionary arms races. PLoS Comput Biol 2019; 15:e1006988. [PMID: 30986245 PMCID: PMC6483265 DOI: 10.1371/journal.pcbi.1006988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
Exaggerated traits involved in species interactions have long captivated the imagination of evolutionary biologists and inspired the durable metaphor of the coevolutionary arms race. Despite decades of research, however, we have only a handful of examples where reciprocal coevolutionary change has been rigorously established as the cause of trait exaggeration. Support for a coevolutionary mechanism remains elusive because we lack generally applicable tools for quantifying the intensity of coevolutionary selection. Here we develop an approximate Bayesian computation (ABC) approach for estimating the intensity of coevolutionary selection using population mean phenotypes of traits mediating interspecific interactions. Our approach relaxes important assumptions of a previous maximum likelihood approach by allowing gene flow among populations, variable abiotic environments, and strong coevolutionary selection. Using simulated data, we show that our ABC method accurately infers the strength of coevolutionary selection if reliable estimates are available for key background parameters and ten or more populations are sampled. Applying our approach to the putative arms race between the plant Camellia japonica and its seed predatory weevil, Curculio camelliae, provides support for a coevolutionary hypothesis but fails to preclude the possibility of unilateral evolution. Comparing independently estimated selection gradients acting on Camellia pericarp thickness with values simulated by our model reveals a correlation between predicted and observed selection gradients of 0.941. The strong agreement between predicted and observed selection gradients validates our method.
Collapse
|
14
|
Hayashi M, Nomura M, Kageyama D. Rapid comeback of males: evolution of male-killer suppression in a green lacewing population. Proc Biol Sci 2019; 285:rspb.2018.0369. [PMID: 29669904 DOI: 10.1098/rspb.2018.0369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/23/2018] [Indexed: 11/12/2022] Open
Abstract
Evolutionary theory predicts that the spread of cytoplasmic sex ratio distorters leads to the evolution of host nuclear suppressors, although there are extremely few empirical observations of this phenomenon. Here, we demonstrate that a nuclear suppressor of a cytoplasmic male killer has spread rapidly in a population of the green lacewing Mallada desjardinsi An M. desjardinsi population, which was strongly female-biased in 2011 because of a high prevalence of the male-killing Spiroplasma endosymbiont, had a sex ratio near parity in 2016, despite a consistent Spiroplasma prevalence. Most of the offspring derived from individuals collected in 2016 had 1 : 1 sex ratios in subsequent generations. Contrastingly, all-female or female-biased broods appeared frequently from crossings of these female offspring with males derived from a laboratory line founded by individuals collected in 2011. These results suggest near-fixation of a nuclear suppressor against male killing in 2016 and reject the notion that a non-male-killing Spiroplasma variant has spread in the population. Consistently, no significant difference was detected in mitochondrial haplotype variation between 2011 and 2016. These findings, and earlier findings in the butterfly Hypolimnas bolina in Samoa, suggest that these quick events of male recovery occur more commonly than is generally appreciated.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.,Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Masashi Nomura
- Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Daisuke Kageyama
- Insect Microbe Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|