1
|
Dose A, Kennington WJ, Evans JP. Heat stress mediates toxicity of rutile titanium dioxide nanoparticles on fertilisation capacity in the broadcast spawning mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175567. [PMID: 39153630 DOI: 10.1016/j.scitotenv.2024.175567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Titanium dioxide nanoparticle (nTiO2) pollution of marine environments is rapidly increasing with potentially deleterious effects on wildlife. Yet, the impacts of nTiO2 on reproduction remain poorly understood. This is especially the case for broadcast spawners, who are likely to be more severely impacted by environmental disturbances because their gametes are directly exposed to the environment during fertilisation. In addition, it is unclear whether rising water temperatures will further exacerbate the impact of nTiO2 toxicity. Here, in a series of fertilisation trials, we systematically examine the main and interactive effects of nTiO2 exposure and seawater temperature on fertilisation success in the Mediterranean mussel Mytilus galloprovincialis. Specifically, our fertilisation trials explored whether nTiO2 exposure influences fertilisation rates when (i) eggs alone are exposed, (ii) both sperm and eggs are exposed simultaneously, and (iii) whether increases in seawater temperature interact with nTiO2 exposure to influence fertilisation rates. We also ask whether changes in nTiO2 concentrations influence key sperm motility traits using computer-assisted sperm analysis (CASA). In fertilisation trials for treatment groups (i) and (ii), we found no main effects of nTiO2 at environmentally relevant concentrations of 5, 10 and 50 μg L-1 on fertilisation capacity relative to the control. Consistent with these findings, we found no effect of nTiO2 exposure on sperm motility. However, in treatment group (iii), when fertilisation trials were conducted at higher temperatures (+6 °C), exposure of gametes from both sexes to 10 μg L-1 nTiO2 led to a reduction in fertilisation rates that was significantly greater than when gametes were exposed to elevated temperature alone. These interacting effects of nTiO2 exposure and seawater temperature demonstrate the toxic potential of nTiO2 for fertilisation processes in a system that is likely to be impacted heavily by predicted future increases in sea surface temperatures.
Collapse
Affiliation(s)
- Annika Dose
- School of Biological Sciences, University of Western Australia, 6009, WA, Australia.
| | - Winn Jason Kennington
- School of Biological Sciences, University of Western Australia, 6009, WA, Australia.
| | - Jonathan Paul Evans
- School of Biological Sciences, University of Western Australia, 6009, WA, Australia.
| |
Collapse
|
2
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
3
|
Leuchtenberger SG, Daleo M, Gullickson P, Delgado A, Lo C, Nishizaki MT. The effects of temperature and pH on the reproductive ecology of sand dollars and sea urchins: Impacts on sperm swimming and fertilization. PLoS One 2022; 17:e0276134. [PMID: 36454769 PMCID: PMC9714736 DOI: 10.1371/journal.pone.0276134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are broadcast spawners, releasing eggs and sperm into the water column for fertilization. We conducted two experiments to investigate: 1) the impact of water temperature on sperm swimming characteristics and fertilization rate in sand dollars (Dendraster excentricus; temperatures 8-38°C) and sea urchins (Mesocentrotus franciscanus; temperatures 8-28°C) and; 2) the combined effects of multiple stressors (water temperature and pH) on these traits in sand dollars. We quantify thermal performance curves showing that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range of water temperatures experienced by sand dollars at our field sites. For sand dollars, both temperature (8, 16, 24°C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature influenced sperm swimming velocity and motility. Although sperm velocities and fertilization were positively correlated, our fertilization kinetics model dramatically overestimated measured rates and this discrepancy was most pronounced under extreme temperature and pH conditions. Our results suggest that environmental stressors like temperature and pH likely impair aspects of the reproductive process beyond simple sperm swimming behavior.
Collapse
Affiliation(s)
- Sara Grace Leuchtenberger
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Maris Daleo
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Peter Gullickson
- Biology Department, Carleton College, Northfield, MN, United States of America
| | - Andi Delgado
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Carly Lo
- Biology Department, Carleton College, Northfield, MN, United States of America
| | - Michael T. Nishizaki
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hudson ME, Sewell MA. Ocean acidification impacts sperm swimming performance and pHi in the New Zealand sea urchin Evechinus chloroticus. J Exp Biol 2022; 225:276137. [PMID: 35899479 DOI: 10.1242/jeb.243670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
In sea urchins, spermatozoa are stored in the gonads in hypercapnic conditions (pH<7.0). During spawning, sperm are diluted in seawater of pH>8.0, and there is an alkalinization of the sperm's internal pH (pHi) through the release of CO2 and H+. Previous research has shown that when pHi is above 7.2-7.3, the dynein ATPase flagellar motors are activated, and the sperm become motile. It has been hypothesised that ocean acidification (OA), which decreases the pH of seawater, may have a narcotic effect on sea urchin sperm by impairing the ability to regulate pHi, resulting in decreased motility and swimming speed. Here we use data collected from the same individuals to test the relationship between pHi and sperm motility/performance in the New Zealand sea urchin Evechinus chloroticus (Valenciennes) under near- (2100) and far-future (2150) atmospheric pCO2 conditions (RCP 8.5: pH 7.77, 7.51). Decreasing seawater pH significantly negatively impacted the proportion of motile sperm), and four of the six computer-assisted sperm analysis (CASA) sperm performance measures. In control conditions, sperm had an activated pHi of 7.52. E. chloroticus sperm could not defend pHi. in future OA conditions; there was a stepped decrease in the pHi at pH 7.77, with no significant difference in mean pHi between pH 7.77 and 7.51. Paired measurements in the same males showed a positive relationship between pHi and sperm motility, but with a significant difference in the response between males. Differences in motility and sperm performance in OA conditions may impact fertilization success in a future ocean.
Collapse
Affiliation(s)
- Michael E Hudson
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.,Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
5
|
Vyas H, Schrankel CS, Espinoza JA, Mitchell KL, Nesbit KT, Jackson E, Chang N, Lee Y, Warner J, Reitzel A, Lyons DC, Hamdoun A. Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus. Development 2022; 149:275601. [PMID: 35666622 PMCID: PMC9245184 DOI: 10.1242/dev.200644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.
Collapse
Affiliation(s)
- Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jose A. Espinoza
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Kasey L. Mitchell
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Katherine T. Nesbit
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Elliot Jackson
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Nathan Chang
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jacob Warner
- University of North Carolina Wilmington 2 Department of Biology and Marine Biology , , Wilmington, NC 28403-5915 , USA
| | - Adam Reitzel
- University of North Carolina Charlotte 3 Department of Biological Sciences , , Charlotte, NC 28223-0001 , USA
| | - Deirdre C. Lyons
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| |
Collapse
|
6
|
Lymbery RA, Brouwer J, Evans JP. Ocean acidification alters sperm responses to egg-derived chemicals in a broadcast spawning mussel. Biol Lett 2022; 18:20220042. [PMID: 35382588 PMCID: PMC8984365 DOI: 10.1098/rsbl.2022.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
The continued emissions of anthropogenic carbon dioxide are causing progressive ocean acidification (OA). While deleterious effects of OA on biological systems are well documented in the growth of calcifying organisms, lesser studied impacts of OA include potential effects on gamete interactions that determine fertilization, which are likely to influence the many marine species that spawn gametes externally. Here, we explore the effects of OA on the signalling mechanisms that enable sperm to track egg-derived chemicals (sperm chemotaxis). We focus on the mussel Mytilus galloprovincialis, where sperm chemotaxis enables eggs to bias fertilization in favour of genetically compatible males. Using an experimental design based on the North Carolina II factorial breeding design, we test whether the experimental manipulation of seawater pH (comparing ambient conditions to predicted end-of-century scenarios) alters patterns of differential sperm chemotaxis. While we find no evidence that male-female gametic compatibility is impacted by OA, we do find that individual males exhibit consistent variation in how their sperm perform in lowered pH levels. This finding of individual variability in the capacity of ejaculates to respond to chemoattractants under acidified conditions suggests that climate change will exert considerable pressure on male genotypes that can withstand an increasingly hostile fertilization environment.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jill Brouwer
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Ocean Acidification, but Not Environmental Contaminants, Affects Fertilization Success and Sperm Motility in the Sea Urchin Paracentrotus lividus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ocean acidification poses an increasing concern for broadcast spawning species that release gametes in the water column where fertilization occurs. Indeed, the functionality of gametes and their interactions may be negatively affected by reduced pH. Susceptibility to other environmental stressors, such as pollutants, may be also altered under acidified conditions, resulting in more detrimental effects. To verify this hypothesis, combined exposures to CO2-driven acidification and environmentally relevant concentrations (0.5 µg/L) of three contaminants (caffeine, diclofenac, and PFOS, all singularly or in mixture) were carried out to highlight potential negative effects on fertilization success and motility of sperm in the sea urchin Paracentrotus lividus. Our results showed a significant reduction in the percentage of fertilized eggs when sperm were pre-exposed to reduced pH (ambient pH minus 0.4 units) compared to that of controls (ambient, pH = 8.1). Sperm speed and motility also decreased when sperm were activated and then exposed at reduced pH. Conversely, at both pH values tested, no significant effect due to the contaminants, nor of their interaction with pH, was found on any of the biological endpoints considered.
Collapse
|
8
|
Molecular mechanisms of sperm motility are conserved in an early-branching metazoan. Proc Natl Acad Sci U S A 2021; 118:2109993118. [PMID: 34810263 PMCID: PMC8640785 DOI: 10.1073/pnas.2109993118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Reef-building corals are the keystone species of the world’s most biodiverse yet threatened marine ecosystems. Coral reproduction, critical for reef resilience, requires that coral sperm swim through the water column to reach the egg. However, little is known about the mechanisms that regulate coral sperm motility. We found here that coral sperm motility is pH dependent and that activation of motility requires signaling via the pH-sensing enzyme soluble adenylyl cyclase. This study reveals the deep conservation of a sperm activation pathway from humans to corals, presenting the first comprehensive examination of the molecular mechanisms regulating sperm motility in an early-diverging animal. These results are critical for understanding the resilience of this sensitive life stage to a changing marine environment. Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na+/H+ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.
Collapse
|
9
|
Minuti JJ, Byrne M, Hemraj DA, Russell BD. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147281. [PMID: 33933766 DOI: 10.1016/j.scitotenv.2021.147281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Heatwaves are increasing in frequency and intensity, with substantial impacts on ecosystems and species which maintain their function. Whether or not species are harmed by heatwave conditions by being pushed beyond their physiological bounds can depend on whether energy replacement is sufficient to enable recovery from acute stress. We exposed an ecologically important sea urchin, Heliocidaris erythrogramma, to experimental marine heatwave scenarios in context with recent summer heat anomalies in moderate (25 °C), and strong heatwave (26 °C) conditions for 10 days, followed by a 10-day recovery period at normal summer temperature (23 °C). Greater heatwave intensity drove higher metabolic rates which were not matched with a concurrent increase in food consumption or faecal production. However, food consumption increased during the post-heatwave recovery period, likely to replenish an energy deficit. Despite this, mortality increased into the recovery period and seemed to be caused by latent effects, manifesting as a decline in health index as individuals progressed from spine and pedicellariae loss, through to loss of tube foot rigor, bald patch disease, culminating in mortality. We show for the first time that the acute thermal stress of heatwaves can have latent physiological effects that cause mortality even when conditions return to normal. Our results show that the negative effects of heatwaves can manifest after relief from stressful conditions and highlight the importance of understanding the latent effects on physiology and health. This understanding will offer insights into the long-term potential for stress recovery following seemingly sublethal effects and whether the restoration of ambient conditions post-heatwave is sufficient to ensure population stability.
Collapse
Affiliation(s)
- Jay J Minuti
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Deevesh A Hemraj
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
10
|
Crean AJ, Immler S. Evolutionary consequences of environmental effects on gamete performance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200122. [PMID: 33866815 DOI: 10.1098/rstb.2020.0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in pre- and post-release gamete environments can influence evolutionary processes by altering fertilization outcomes and offspring traits. It is now widely accepted that offspring inherit epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to eggs and sperm-acquired post-release may also persist post-fertilization with consequences for offspring developmental success and later-life fitness. In externally fertilizing species, gametes are directly exposed to anthropogenically induced environmental impacts including pollution, ocean acidification and climate change. When fertilization occurs within the female reproductive tract, although gametes are at least partially protected from external environmental variation, the selective environment is likely to vary among females. In both scenarios, gamete traits and selection on gametes can be influenced by environmental conditions such as temperature and pollution as well as intrinsic factors such as male and female reproductive fluids, which may be altered by changes in male and female health and physiology. Here, we highlight some of the pathways through which changes in gamete environments can affect fertilization dynamics, gamete interactions and ultimately offspring fitness. We hope that by drawing attention to this important yet often overlooked source of variation, we will inspire future research into the evolutionary implications of anthropogenic interference of gamete environments including the use of assisted reproductive technologies. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
11
|
Warner JF, Lord JW, Schreiter SA, Nesbit KT, Hamdoun A, Lyons DC. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development. Genome Biol Evol 2021; 13:evab061. [PMID: 33769486 PMCID: PMC8085125 DOI: 10.1093/gbe/evab061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The painted urchin Lytechinus pictus is a sea urchin in the family Toxopneustidae and one of several sea urchin species that are routinely used as an experimental research organism. Recently, L. pictus has emerged as a tractable model system for establishing transgenic sea urchin lines due to its amenability to long term laboratory culture. We present the first published genome of L. pictus. This chromosomal-level assembly was generated using Illumina sequencing in conjunction with Oxford Nanopore Technologies long read sequencing and HiC chromatin conformation capture sequencing. The 998.9-Mb assembly exhibits high contiguity and has a scaffold length N50 of 46.0 Mb with 97% of the sequence assembled into 19 chromosomal-length scaffolds. These 19 scaffolds exhibit a high degree of synteny compared with the 19 chromosomes of a related species Lytechinus variegatus. Ab initio and transcript evidence gene modeling, combined with sequence homology, identified 28,631 gene models that capture 92% of BUSCO orthologs. This annotation strategy was validated by manual curation of gene models for the ABC transporter superfamily, which confirmed the completeness and accuracy of the annotations. Thus, this genome assembly, in conjunction with recent high contiguity assemblies of related species, positions L. pictus as an exceptional model system for comparative functional genomics and it will be a key resource for the developmental, toxicological, and ecological biology scientific communities.
Collapse
Affiliation(s)
- Jacob F Warner
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - James W Lord
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Samantha A Schreiter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, North Carolina, USA
| | - Katherine T Nesbit
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Gallo A, Esposito MC, Cuccaro A, Buia MC, Tarallo A, Monfrecola V, Tosti E, Boni R. Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115063. [PMID: 32806401 DOI: 10.1016/j.envpol.2020.115063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The ongoing increase of CO2 in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species' survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alessia Cuccaro
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Andrea Tarallo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Vincenzo Monfrecola
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| |
Collapse
|