1
|
Gawriyski L, Jouhilahti EM, Yoshihara M, Fei L, Weltner J, Airenne TT, Trokovic R, Bhagat S, Tervaniemi MH, Murakawa Y, Salokas K, Liu X, Miettinen S, Bürglin TR, Sahu B, Otonkoski T, Johnson MS, Katayama S, Varjosalo M, Kere J. Comprehensive characterization of the embryonic factor LEUTX. iScience 2023; 26:106172. [PMID: 36876139 PMCID: PMC9978639 DOI: 10.1016/j.isci.2023.106172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Tomi T. Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mari H. Tervaniemi
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sini Miettinen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | | | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, 0349 Oslo, Norway
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
2
|
Baker EA, Gilbert SPR, Shimeld SM, Woollard A. Extensive non-redundancy in a recently duplicated developmental gene family. BMC Ecol Evol 2021; 21:33. [PMID: 33648446 PMCID: PMC7919330 DOI: 10.1186/s12862-020-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It has been proposed that recently duplicated genes are more likely to be redundant with one another compared to ancient paralogues. The evolutionary logic underpinning this idea is simple, as the assumption is that recently derived paralogous genes are more similar in sequence compared to members of ancient gene families. We set out to test this idea by using molecular phylogenetics and exploiting the genetic tractability of the model nematode, Caenorhabditis elegans, in studying the nematode-specific family of Hedgehog-related genes, the Warthogs. Hedgehog is one of a handful of signal transduction pathways that underpins the development of bilaterian animals. While having lost a bona fide Hedgehog gene, most nematodes have evolved an expanded repertoire of Hedgehog-related genes, ten of which reside within the Warthog family. RESULTS We have characterised their evolutionary origin and their roles in C. elegans and found that these genes have adopted new functions in aspects of post-embryonic development, including left-right asymmetry and cell fate determination, akin to the functions of their vertebrate counterparts. Analysis of various double and triple mutants of the Warthog family reveals that more recently derived paralogues are not redundant with one another, while a pair of divergent Warthogs do display redundancy with respect to their function in cuticle biosynthesis. CONCLUSIONS We have shown that newer members of taxon-restricted gene families are not always functionally redundant despite their recent inception, whereas much older paralogues can be, which is considered paradoxical according to the current framework in gene evolution.
Collapse
Affiliation(s)
- E A Baker
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S P R Gilbert
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S M Shimeld
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - A Woollard
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|