1
|
Rambahiniarison J, Agustines A, Alexopoulos K, Araujo G, Armstrong AO, Arnold S, Barruga A, Cañete T, Conales S, Delijero K, Enolva NP, Flam AL, Keane E, Labaja J, Legaspi CG, Murie C, Murray R, Oliver SP, Pierce SJ, Ponzo A, Rohner CA, Schifferer R, Snow S, Spakowski M, Stevens GMW, Tilgel T, Wong JNC, Yaptinchay AA, Barr Y. Distribution of the reef manta ray Mobula alfredi and the oceanic manta ray Mobula birostris in the Philippines: a collaborative effort for conservation. JOURNAL OF FISH BIOLOGY 2023; 102:492-503. [PMID: 36451613 DOI: 10.1111/jfb.15283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Little is known about manta ray population size, structure and connectivity in the Philippines. In collaboration with dive operators, non-governmental organizations and authorities, sightings of manta rays were collated into a single national database. Using in-water photographs and videos gathered through citizen science and dedicated research efforts, this study compiled sightings between 2004 and 2020, showing 22 separate sites throughout the archipelago with manta rays present. A total of 392 individual reef manta rays (Mobula alfredi) and 107 oceanic manta rays (Mobula birostris) were identified from the collected footage. Four specific sites in the provinces of Masbate and Palawan together hosted 89% of all identified individuals and accounted for 95% of sightings, highlighting these areas are key aggregation sites. This study also reports the movements of M. birostris within the Philippines, based on photo-identification of three individuals moving 150 km between Cebu and Masbate. Despite the growing number of recreational divers in Daanbantayan and San Jacinto, an 80% decline in M. birostris sightings was observed at these sites. To ensure effective future conservation, it is recommended that efforts focus on the identification and protection of manta ray hotspots and migratory corridors, the creation of a sustainable tourism framework and, most important, the implementation of mitigation strategies to reduce fisheries interactions.
Collapse
Affiliation(s)
- Joshua Rambahiniarison
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
- Coastal Oceans Research and Development - Indian Ocean East Africa, Mombasa, Kenya
| | - Ariana Agustines
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | | | - Gonzalo Araujo
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
| | - Asia O Armstrong
- Project Manta, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shannon Arnold
- The Manta Trust, Catemwood House, Norwood Lane, Dorset, UK
| | - Aldrin Barruga
- Ticao-Burias Pass Protected Seascape, Department of Environment and Natural Resources V, Provincial Environment and Natural Resources Office, Masbate City, Philippines
| | - Titus Cañete
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | - Segundo Conales
- Tubbataha Management Office, Puerto Princesa City, Philippines
| | - Kymry Delijero
- World Wildlife Fund Philippines, Puerto Princesa City, Philippines
| | - Nonie P Enolva
- Bureau of Fisheries and Aquatic Resources - Region 5, Department of Agriculture, Camarines Sur, Philippines
| | - Anna L Flam
- Marine Megafauna Foundation, West Palm Beach, Florida, USA
| | - Eliya Keane
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | | | - Calum Murie
- The Department of Biological Sciences, University of Chester, Chester, UK
- The Underwater Africa Foundation, Inhambane, Mozambique
| | - Ryan Murray
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | - Simon P Oliver
- The Department of Biological Sciences, University of Chester, Chester, UK
| | - Simon J Pierce
- Marine Megafauna Foundation, West Palm Beach, Florida, USA
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | | | | | - Sally Snow
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | - Martina Spakowski
- Large Marine Vertebrates Research Institute Philippines, Bohol, Philippines
| | | | | | | | | | - Yotam Barr
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
3
|
Kokita T, Ueno K, Yamasaki YY, Matsuda M, Tabata R, Nagano AJ, Mishina T, Watanabe K. Gudgeon fish with and without genetically determined countershading coexist in heterogeneous littoral environments of an ancient lake. Ecol Evol 2021; 11:13283-13294. [PMID: 34646469 PMCID: PMC8495823 DOI: 10.1002/ece3.8050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Countershading, characterized by a darker dorsal surface and lighter ventral surface, is common among many animals. This dorsoventral pigment polarity is often thought to be adaptive coloration for camouflage. By contrast, noncountershaded (melanistic) morphs often occur within a species due to genetic color polymorphism in terrestrial animals. However, the polymorphism with either countershaded or melanistic morphs is poorly known in wild aquatic animals. This study explored the genetic nature of diverged color morphs of a lineage of gudgeon fish (genus Sarcocheilichthys) in the ancient Lake Biwa and propose this system as a novel model for testing hypotheses of functional aspects of countershading and its loss in aquatic environments. This system harbors two color morphs that have been treated taxonomically as separate species; Sarcocheilichthys variegatus microoculus which occurs throughout the littoral zone and Sarcocheilichthys biwaensis which occurs in and around rocky areas. First, we confirmed that the divergence of dorsoventral color patterns between the two morphs is under strict genetic control at the levels of chromatophore distribution and melanin-related gene expression under common garden rearing. The former morph displayed sharp countershading coloration, whereas the latter morph exhibited a strong tendency toward its loss. The crossing results indicated that this divergence was likely controlled by a single locus in a two-allele Mendelian inheritance pattern. Furthermore, our population genomic and genome-wide association study analyses detected no genome-wide divergence between the two morphs, except for one region near a locus that may be associated with the color divergence. Thus, these morphs are either in a state of intraspecific color polymorphism or two incipient species. Evolutionary forces underlying this polymorphism appear to be associated with heterogeneous littoral environments in this lake. Future ecological genomic research will provide insight into adaptive functions of this widespread coloration, including the eco-evolutionary drivers of its loss, in the aquatic world.
Collapse
Affiliation(s)
- Tomoyuki Kokita
- Faculty of Marine Science and TechnologyFukui Prefectural UniversityObamaJapan
| | - Kohtaro Ueno
- Faculty of Marine Science and TechnologyFukui Prefectural UniversityObamaJapan
| | | | | | | | - Atsushi J. Nagano
- Faculty of AgricultureRyukoku UniversityOtsuJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Tappei Mishina
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | | |
Collapse
|
4
|
Sagar V, Kaelin CB, Natesh M, Reddy PA, Mohapatra RK, Chhattani H, Thatte P, Vaidyanathan S, Biswas S, Bhatt S, Paul S, Jhala YV, Verma MM, Pandav B, Mondol S, Barsh GS, Swain D, Ramakrishnan U. High frequency of an otherwise rare phenotype in a small and isolated tiger population. Proc Natl Acad Sci U S A 2021; 118:e2025273118. [PMID: 34518374 PMCID: PMC8488692 DOI: 10.1073/pnas.2025273118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.
Collapse
Affiliation(s)
- Vinay Sagar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
| | - Christopher B Kaelin
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Meghana Natesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Biology Department, Indian Institute of Science Education and Research, Tirupati 411008, India
| | - P Anuradha Reddy
- Laboratory for Conservation of Endangered Species, Center for Cellular & Molecular Biology, Hyderabad 500048, India
| | | | - Himanshu Chhattani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Prachi Thatte
- World Wide Fund for Nature - India, New Delhi 110003 India
| | - Srinivas Vaidyanathan
- Foundation for Ecological Research, Advocacy and Learning, Auroville Post, Tamil Nadu 605101 India
| | | | | | - Shashi Paul
- Odisha Forest Department, Bhubaneswar 751023, India
| | - Yadavendradev V Jhala
- Wildlife Institute of India, Dehradun 248001, India
- National Tiger Conservation Authority, Wildlife Institute of India Tiger Cell, Wildlife Institute of India, Dehradun 248001, India
| | | | | | | | - Gregory S Barsh
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Debabrata Swain
- Former Member Secretary, National Tiger Conservation Authority, New Delhi 110003, India
- Former Principal Chief Conservator of Forest and Head of Forest Force, Indian Forest Service, Bhubaneswar 751023, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- DBT - Wellcome Trust India Alliance, Hyderabad 500034, India
| |
Collapse
|
5
|
Perryman RJ, Carpenter M, Lie E, Sofronov G, Marshall AD, Brown C. Reef manta ray cephalic lobe movements are modulated during social interactions. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Genome-wide SNPs detect no evidence of genetic population structure for reef manta rays (Mobula alfredi) in southern Mozambique. Heredity (Edinb) 2020; 126:308-319. [PMID: 33005043 DOI: 10.1038/s41437-020-00373-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022] Open
Abstract
Little is known about the extent of genetic connectivity along continuous coastlines in manta rays, or whether site visitation is influenced by relatedness. Such information is pertinent to defining population boundaries and understanding localized dispersal patterns and behaviour. Here, we use 3057 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate population genetic structure and assess the levels of relatedness at aggregation sites of reef manta rays (Mobula alfredi) in southern Mozambique (n = 114). Contrary to indications of limited dispersal along the southern Mozambican coastline inferred from photo-identification and telemetry studies, our results show no evidence of population structure (non-significant FST < 0.001) for M. alfredi along this coast. We also found no evidence that individuals sampled at the same site were more related than expected by chance for males, females or across both sexes, suggesting that kinship may not influence visitation patterns at these sites. We estimated the effective population size (Ne) of this population to be 375 (95% CI = 369-380). Comparison to a distant eastern Indian Ocean site (Western Australia, n = 15) revealed strong genetic differentiation between Mozambique and Western Australia (FST = 0.377), identifying the Indian Ocean basin as a barrier to dispersal. Our findings show that genetic connectivity in M. alfredi extends for several hundred kilometres along continuous coastlines. We therefore recommend that the population in Mozambique be considered a discrete management unit, and future conservation plans should prioritize integrated strategies along the entire southern coastline.
Collapse
|
7
|
Venables SK, Marshall AD, Germanov ES, Perryman RJY, Tapilatu RF, Hendrawan IG, Flam AL, van Keulen M, Tomkins JL, Kennington WJ. It's not all black and white: investigating colour polymorphism in manta rays across Indo-Pacific populations. Proc Biol Sci 2019; 286:20191879. [PMID: 31594509 PMCID: PMC6790782 DOI: 10.1098/rspb.2019.1879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/18/2019] [Indexed: 11/12/2022] Open
Abstract
Intraspecific colour polymorphisms have been the focus of numerous studies, yet processes affecting melanism in the marine environment remain poorly understood. Arguably, the most prominent example of melanism in marine species occurs in manta rays (Mobula birostris and Mobula alfredi). Here, we use long-term photo identification catalogues to document the frequency variation of melanism across Indo-Pacific manta ray populations and test for evidence of selection by predation acting on colour morph variants. We use mark-recapture modelling to compare survivorship of typical and melanistic colour morphs in three M. alfredi populations and assess the relationship between frequency variation and geographical distance. While there were large differences in melanism frequencies among populations of both species (0-40.70%), apparent survival estimates revealed no difference in survivorship between colour morphs. We found a significant association between phenotypic and geographical distance in M. birostris, but not in M. alfredi. Our results suggest that melanism is not under selection by predation in the tested M. alfredi populations, and that frequency differences across populations of both species are a consequence of neutral genetic processes. As genetic colour polymorphisms are often subjected to complex selection mechanisms, our findings only begin to elucidate the underlying evolutionary processes responsible for the maintenance and frequency variation of melanism in manta ray populations.
Collapse
Affiliation(s)
- Stephanie K. Venables
- Centre for Evolutionary Biology, School of Biological Sciences, the University of Western Australia, Crawley, Western Australia, Australia
- Marine Megafauna Foundation, Truckee, CA, USA
| | | | - Elitza S. Germanov
- Marine Megafauna Foundation, Truckee, CA, USA
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Robert J. Y. Perryman
- Marine Megafauna Foundation, Truckee, CA, USA
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ricardo F. Tapilatu
- Research Center for Pacific Marine Resources, Universitas Papua, Manokwari, Papua Barat, Indonesia
| | - I Gede Hendrawan
- Department of Marine Sciences, Faculty of Marine Sciences and Fisheries, Udayana University, Bali, Indonesia
| | | | - Mike van Keulen
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Joseph L. Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, the University of Western Australia, Crawley, Western Australia, Australia
| | - W. Jason Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, the University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|