1
|
Gianazza E, Brioschi M, Eligini S, Banfi C. Mass spectrometry for the study of adipocyte cell secretome in cardiovascular diseases. MASS SPECTROMETRY REVIEWS 2024; 43:752-781. [PMID: 36161723 DOI: 10.1002/mas.21812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/04/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Adipose tissue is classically considered the primary site of lipid storage, but in recent years has garnered appreciation for its broad role as an endocrine organ, capable of remotely signaling to other tissues to alter their metabolic program. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, with a wide range of endocrine and paracrine effects on the cardiovascular system. Thanks to the development and improvement of high-throughput mass spectrometry, the size and components of the human secretome have been characterized. In this review, we summarized the recent advances in mass spectrometry-based studies of the cell and tissue secretome for the understanding of adipose tissue biology, which may help to decipher the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation.
Collapse
Affiliation(s)
- Erica Gianazza
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Sonia Eligini
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| |
Collapse
|
2
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the co-infection facilitation hypothesis. Oecologia 2024; 204:317-325. [PMID: 37386196 PMCID: PMC10756930 DOI: 10.1007/s00442-023-05409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus, are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 20 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites compared to S. solidus-uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite co-evolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
Affiliation(s)
- Maria L Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Biological Sciences, North Carolina State University, Morehead City, NC, 28557, USA.
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
3
|
Matthews DG, Maciejewski MF, Wong GA, Lauder GV, Bolnick DI. Locomotor effects of a fibrosis-based immune response in stickleback fish. J Exp Biol 2023; 226:jeb246684. [PMID: 37947155 DOI: 10.1242/jeb.246684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The vertebrate immune system provides an impressively effective defense against parasites and pathogens. However, these benefits must be balanced against a range of costly side-effects including energy loss and risks of auto-immunity. These costs might include biomechanical impairment of movement, but little is known about the intersection between immunity and biomechanics. Here, we show that a fibrosis immune response to Schistocephalus solidus infection in freshwater threespine stickleback (Gasterosteus aculeatus) has collateral effects on their locomotion. Although fibrosis is effective at reducing infection, some populations of stickleback actively suppress this immune response, possibly because the costs of fibrosis outweigh the benefits. We quantified the locomotor effects of the fibrosis immune response in the absence of parasites to investigate whether there are incidental costs of fibrosis that could help explain why some fish forego this effective defense. To do this, we induced fibrosis in stickleback and then tested their C-start escape performance. Additionally, we measured the severity of fibrosis, body stiffness and body curvature during the escape response. We were able to estimate performance costs of fibrosis by including these variables as intermediates in a structural equation model. This model revealed that among control fish without fibrosis, there is a performance cost associated with increased body stiffness. However, fish with fibrosis did not experience this cost but rather displayed increased performance with higher fibrosis severity. This result demonstrates that the adaptive landscape of immune responses can be complex with the potential for wide-reaching and unexpected fitness consequences.
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Meghan F Maciejewski
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Greta A Wong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Matthews DG, Maciejewski MF, Wong GA, Lauder GV, Bolnick DI. Locomotor effects of a fibrosis-based immune response in stickleback fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546342. [PMID: 37425734 PMCID: PMC10326981 DOI: 10.1101/2023.06.24.546342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The vertebrate immune system provides an impressively effective defense against parasites and pathogens. However, these benefits must be balanced against a range of costly side-effects including energy loss and risks of auto-immunity. These costs might include biomechanical impairment of movement, but little is known about the intersection between immunity and biomechanics. Here, we show that a fibrosis immune response in threespine stickleback (Gasterosteus aculeatus) has collateral effects on their locomotion. When freshwater stickleback are infected with the tapeworm parasite Schistocephalus solidus, they face an array of fitness consequences ranging from impaired body condition and fertility to an increased risk of mortality. To fight the infection, some stickleback will initiate a fibrosis immune response in which they produce excess collagenous tissue in their coelom. Although fibrosis is effective at reducing infection, some populations of stickleback actively suppress this immune response, possibly because the costs of fibrosis outweigh the benefits. Here we quantify the locomotor effects of the fibrosis immune response in the absence of parasites to investigate whether there are collateral costs of fibrosis that could help explain why some fish forego this effective defense. To do this, we induce fibrosis in stickleback and then test their C-start escape performance. Additionally, we measure the severity of fibrosis, body stiffness, and body curvature during the escape response. We were able to estimate performance costs of fibrosis by including these variables as intermediates in a structural equation model. This model reveals that among control fish without fibrosis, there is a performance cost associated with increased body stiffness. However, fish with fibrosis did not experience this cost but rather displayed increased performance with higher fibrosis severity. This result demonstrates that the adaptive landscape of immune responses can be complex with the potential for wide reaching and unexpected fitness consequences.
Collapse
Affiliation(s)
- David G. Matthews
- Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - Meghan F. Maciejewski
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, 61820, IL, USA
- Department of Ecology Evolutionary Biology, University of Connecticut, Storrs, 06269, CT, USA
| | - Greta A. Wong
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - George V. Lauder
- Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - Daniel I. Bolnick
- Department of Ecology Evolutionary Biology, University of Connecticut, Storrs, 06269, CT, USA
| |
Collapse
|
5
|
Rodgers ML, Bolnick DI. Opening a can of worms: a test of the coinfection facilitation hypothesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541347. [PMID: 37292793 PMCID: PMC10245757 DOI: 10.1101/2023.05.18.541347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Parasitic infections are a global occurrence and impact the health of many species. Coinfections, where two or more species of parasite are present in a host, are a common phenomenon across species. Coinfecting parasites can interact directly, or indirectly via their manipulation of (and susceptibility to) the immune system of their shared host. Helminths, such as the cestode Schistocephalus solidus , are well known to suppress immunity of their host (threespine stickleback, Gasterosteus aculeatus ), potentially facilitating other parasite species. Yet, hosts can evolve a more robust immune response (as seen in some stickleback populations), potentially turning facilitation into inhibition. Using wild-caught stickleback from 21 populations with non-zero S. solidus prevalence, we tested an a priori hypothesis that S. solidus infection facilitates infection by other parasites. Consistent with this hypothesis, individuals with S. solidus infections have 18.6% higher richness of other parasites, compared to S. solidus -uninfected individuals from the same lakes. This facilitation-like trend is stronger in lakes where S. solidus is particularly successful but is reversed in lakes with sparse and smaller cestodes (indicative of stronger host immunity). These results suggest that a geographic mosaic of host-parasite coevolution might lead to a mosaic of between-parasite facilitation/inhibition effects.
Collapse
|
6
|
Hahn MA, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Mol Ecol 2022; 31:1577-1594. [PMID: 35000227 DOI: 10.1111/mec.16344] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on eco-evolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endo- microbiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host's and impacts the host immune response to infection.
Collapse
Affiliation(s)
- Megan A Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France.,UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, 94704, Maisons-Alfort, France
| |
Collapse
|
7
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
8
|
Cozzarolo CS, Glaizot O, Christe P, Pigeault R. Enhanced Attraction of Arthropod Vectors to Infected Vertebrates: A Review of Empirical Evidence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.568140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Jolles JW, Mazué GPF, Davidson J, Behrmann-Godel J, Couzin ID. Schistocephalus parasite infection alters sticklebacks' movement ability and thereby shapes social interactions. Sci Rep 2020; 10:12282. [PMID: 32703965 PMCID: PMC7378215 DOI: 10.1038/s41598-020-69057-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/01/2020] [Indexed: 11/27/2022] Open
Abstract
Parasitism is ubiquitous in the animal kingdom. Although many fundamental aspects of host-parasite relationships have been unravelled, few studies have systematically investigated how parasites affect organismal movement. Here we combine behavioural experiments of Schistocephalus solidus infected sticklebacks with individual-based simulations to understand how parasitism affects individual movement ability and thereby shapes social interaction patterns. High-resolution tracking revealed that infected fish swam, accelerated, and turned more slowly than did non-infected fish, and tended to be more predictable in their movements. Importantly, the strength of these effects increased with increasing parasite load (proportion of body weight), with more heavily infected fish showing larger changes and impairments in behaviour. When grouped, pairs of infected fish moved more slowly, were less cohesive, less aligned, and less temporally coordinated than non-infected pairs, and mixed pairs were primarily led by the non-infected fish. These social patterns also emerged in simulations of self-organised groups composed of individuals differing similarly in speed and turning tendency, suggesting infection-induced changes in mobility and manoeuvrability may drive collective outcomes. Together, our results demonstrate how infection with a complex life-cycle parasite affects the movement ability of individuals and how this in turn shapes social interaction patterns, providing important mechanistic insights into the effects of parasites on host movement dynamics.
Collapse
Affiliation(s)
- Jolle W Jolles
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.
- Zukunftskolleg, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | - Geoffrey P F Mazué
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Jacob Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | | | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|