1
|
McLellan CF, Cuthill IC, Montgomery SH. Pattern variation is linked to anti-predator coloration in butterfly larvae. Proc Biol Sci 2023; 290:20230811. [PMID: 37357867 PMCID: PMC10291709 DOI: 10.1098/rspb.2023.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.
Collapse
Affiliation(s)
- Callum F. McLellan
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
Hongjamrassilp W, Zhang R, Natterson-Horowitz B, Blumstein DT. Glaucoma through Animal’s Eyes: Insights from the Evolution of Intraocular Pressure in Mammals and Birds. Animals (Basel) 2022; 12:ani12162027. [PMID: 36009617 PMCID: PMC9404445 DOI: 10.3390/ani12162027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Understanding how a disease evolved across the animal kingdom could help us better understand the disease and might lead to novel methods for treatment. Here, we studied the evolution of glaucoma, an irreversible eye disease, in mammals and birds, by studying the evolution of intraocular pressure (IOP), a central driver of glaucoma, and searching for associations between life history traits and IOP. Our results revealed that IOP is a taxa-specific trait that is higher in some species than in others. Higher IOPs appear to have evolved multiple times in mammals and birds. Higher IOPs were found in mammals with higher body mass and in aquatic birds. We also found that higher IOPs evolved through stabilizing selection, with the optimum IOP in mammals and birds being 17.67 and 14.31 mmHg, respectively. This supports the hypothesis that higher IOPs may be an adaptive trait for certain animals. Focusing on species with higher IOPs but no evidence of glaucoma may help identify glaucoma-resistant adaptations, which could be developed into human therapies. Abstract Glaucoma, an eye disorder caused by elevated intraocular pressure (IOP), is the leading cause of irreversible blindness in humans. Understanding how IOP levels have evolved across animal species could shed light on the nature of human vulnerability to glaucoma. Here, we studied the evolution of IOP in mammals and birds and explored its life history correlates. We conducted a systematic review, to create a dataset of species-specific IOP levels and reconstructed the ancestral states of IOP using three models of evolution (Brownian, Early burst, and Ornstein–Uhlenbeck (OU)) to understand the evolution of glaucoma. Furthermore, we tested the association between life history traits (e.g., body mass, blood pressure, diet, longevity, and habitat) and IOP using phylogenetic generalized least squares (PGLS). IOP in mammals and birds evolved under the OU model, suggesting stabilizing selection toward an optimal value. Larger mammals had higher IOPs and aquatic birds had higher IOPs; no other measured life history traits, the type of tonometer used, or whether the animal was sedated when measuring IOP explained the significant variation in IOP in this dataset. Elevated IOP, which could result from physiological and anatomical processes, evolved multiple times in mammals and birds. However, we do not understand how species with high IOP avoid glaucoma. While we found very few associations between life history traits and IOP, we suggest that more detailed studies may help identify mechanisms by which IOP is decoupled from glaucoma. Importantly, species with higher IOPs (cetaceans, pinnipeds, and rhinoceros) could be good model systems for studying glaucoma-resistant adaptations.
Collapse
Affiliation(s)
- Watcharapong Hongjamrassilp
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Young Drive South, Los Angeles, CA 90095, USA
- Correspondence: or (W.H.); (D.T.B.)
| | - Roger Zhang
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Young Drive South, Los Angeles, CA 90095, USA
| | - B. Natterson-Horowitz
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Young Drive South, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at UCLA, Division of Cardiology, 650 Charles E. Young Drive South, A2-237, Los Angeles, CA 90095, USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Young Drive South, Los Angeles, CA 90095, USA
- Correspondence: or (W.H.); (D.T.B.)
| |
Collapse
|
3
|
Rossi V, Unitt R, McNamara M, Zorzin R, Carnevale G. Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities. PALAEONTOLOGY 2022; 65:e12600. [PMID: 35915728 PMCID: PMC9324815 DOI: 10.1111/pala.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Colour patterning in extant animals can be used as a reliable indicator of their biology and, in extant fish, can inform on feeding strategy. Fossil fish with preserved colour patterns may thus illuminate the evolution of fish behaviour and community structure, but are understudied. Here we report preserved melanin-based integumentary colour patterning and internal anatomy of the fossil moonfish Mene rhombea (Menidae) from the Bolca Lagerstätte (Eocene (Ypresian), north-east Italy). The melanosome-based longitudinal stripes of M. rhombea differ from the dorsal rows of black spots in its extant relative M. maculata, suggesting that the ecology of moonfish has changed during the Cenozoic. Extant moonfish are coastal schooling fish that feed on benthic invertebrates, but the longitudinal stripes and stomach contents with fish remains in M. rhombea suggest unstructured open marine ecologies and a piscivorous diet. The localized distribution of extant moonfish species in the Indo-Pacific Ocean may reflect, at least in part, tectonically-driven reorganization of global oceanographic patterns during the Cenozoic. It is likely that shifts in habitat and colour patterning genes promoted colour pattern evolution in the menid lineage.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Museo di Scienze Naturali dell’Alto AdigeBolzano39100Italy
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Richard Unitt
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Maria McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Roberto Zorzin
- Sezione di Geologia e PaleontologiaMuseo Civico di Storia Naturale di VeronaLungadige Porta Vittoria 937129VeronaItaly
| | - Giorgio Carnevale
- Dipartimento di Scienze della TerraUniversità degli Studi di TorinoVia Valperga Caluso 3510125TorinoItaly
| |
Collapse
|
4
|
Nekaris KA, Campera M, Watkins AR, Weldon AV, Hedger K, Morcatty TQ. Aposematic signaling and seasonal variation in dorsal pelage in a venomous mammal. Ecol Evol 2021; 11:11387-11397. [PMID: 34429927 PMCID: PMC8366853 DOI: 10.1002/ece3.7928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
In mammals, colouration patterns are often related to concealment, intraspecific communication, including aposematic signals, and physiological adaptations. Slow lorises (Nycticebus spp.) are arboreal primates native to Southeast Asia that display stark colour contrast, are highly territorial, regularly enter torpor, and are notably one of only seven mammal taxa that possess venom. All slow loris species display a contrasting stripe that runs cranial-caudally along the median sagittal plane of the dorsum. We examine whether these dorsal markings facilitate background matching, seasonal adaptations, and intraspecific signaling. We analyzed 195 images of the dorsal region of 60 Javan slow loris individuals (Nycticebus javanicus) from Java, Indonesia. We extracted greyscale RGB values from dorsal pelage using ImageJ software and calculated contrast ratios between dorsal stripe and adjacent pelage in eight regions. We assessed through generalized linear mixed models if the contrast ratio varied with sex, age, and seasonality. We also examined whether higher contrast was related to more aggressive behavior or increased terrestrial movement. We found that the dorsal stripe of N. javanicus changed seasonally, being longer and more contrasting in the wet season, during which time lorises significantly increased their ground use. Stripes were most contrasting in younger individuals of dispersal age that were also the most aggressive during capture. The dorsal stripe became less contrasting as a loris aged. A longer stripe when ground use is more frequent can be related to disruptive colouration. A darker anterior region by younger lorises with less fighting experience may allow them to appear larger and fiercer. We provide evidence that the dorsum of a cryptic species can have multimodal signals related to concealment, intraspecific communication, and physiological adaptations.
Collapse
Affiliation(s)
- K. Anne‐Isola Nekaris
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
- Little Fireface ProjectCipagantiJavaIndonesia
| | - Marco Campera
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
- Little Fireface ProjectCipagantiJavaIndonesia
| | - Anna R. Watkins
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| | - Ariana V. Weldon
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| | | | - Thais Q. Morcatty
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
5
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
6
|
Integumentary Colour Allocation in the Stork Family (Ciconiidae) Reveals Short-Range Visual Cues for Species Recognition. BIRDS 2021. [DOI: 10.3390/birds2010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The family Ciconiidae comprises 19 extant species which are highly social when nesting and foraging. All species share similar morphotypes, with long necks, a bill, and legs, and are mostly coloured in the achromatic spectrum (white, black, black, and white, or shades of grey). Storks may have, however, brightly coloured integumentary areas in, for instance, the bill, legs, or the eyes. These chromatic patches are small in surface compared with the whole body. We have analyzed the conservatism degree of colouration in 10 body areas along an all-species stork phylogeny derived from BirdTRee using Geiger models. We obtained low conservatism in frontal areas (head and neck), contrasting with a high conservatism in the rest of the body. The frontal areas tend to concentrate the chromatic spectrum whereas the rear areas, much larger in surface, are basically achromatic. These results lead us to suggest that the divergent evolution of the colouration of frontal areas is related to species recognition through visual cue assessment in the short-range, when storks form mixed-species flocks in foraging or resting areas.
Collapse
|
7
|
Negro JJ, Doña J, Blázquez MC, Rodríguez A, Herbert-Read JE, Brooke MDL. Contrasting stripes are a widespread feature of group living in birds, mammals and fishes. Proc Biol Sci 2020; 287:20202021. [PMID: 33049169 PMCID: PMC7657865 DOI: 10.1098/rspb.2020.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Grouping is a widespread form of predator defence, with individuals in groups often performing evasive collective movements in response to attack by predators. Individuals in these groups use behavioural rules to coordinate their movements, with visual cues about neighbours' positions and orientations often informing movement decisions. Although the exact visual cues individuals use to coordinate their movements with neighbours have not yet been decoded, some studies have suggested that stripes, lines, or other body patterns may act as conspicuous conveyors of movement information that could promote coordinated group movement, or promote dazzle camouflage, thereby confusing predators. We used phylogenetic logistic regressions to test whether the contrasting achromatic stripes present in four different taxa vulnerable to predation, including species within two orders of birds (Anseriformes and Charadriiformes), a suborder of Artiodactyla (the ruminants), and several orders of marine fishes (predominantly Perciformes) were associated with group living. Contrasting patterns were significantly more prevalent in social species, and tended to be absent in solitary species or species less vulnerable to predation. We suggest that stripes taking the form of light-coloured lines on dark backgrounds, or vice versa, provide a widespread mechanism across taxa that either serves to inform conspecifics of neighbours' movements, or to confuse predators, when moving in groups. Because detection and processing of patterns and of motion in the visual channel is essentially colour-blind, diverse animal taxa with widely different vision systems (including mono-, di-, tri-, and tetrachromats) appear to have converged on a similar use of achromatic patterns, as would be expected given signal-detection theory. This hypothesis would explain the convergent evolution of conspicuous achromatic patterns as an antipredator mechanism in numerous vertebrate species.
Collapse
Affiliation(s)
- Juan J. Negro
- Estación Biológica de Doñana-CSIC, Avda. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL 61820, USA
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - M. Carmen Blázquez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), 23096 La Paz, Baja California Sur, Mexico
| | - Airam Rodríguez
- Estación Biológica de Doñana-CSIC, Avda. Americo Vespucio 26, 41092 Sevilla, Spain
- Grupo de Ornitología e Historia Natural de las Islas Canarias, GOHNIC, Canarias, Spain
| | - James E. Herbert-Read
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
- Department of Biology, Aquatic Ecology Unit, Lund University, Lund 223 62, Sweden
| | - M. de L. Brooke
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| |
Collapse
|